5.定義在R上的函數(shù)f(x)滿足f'(x)>1-f(x),f(0)=3,f'(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)>ex+2(e其中為自然對(duì)數(shù)的底數(shù))的解集是( 。
A.{x|x>0}B.{x|x<0}C.{x|x<-1或x>1}D.{x|x<-1或0<x<1}

分析 令F(x)=exf(x)-ex-2,從而求導(dǎo)F′(x)=ex(f(x)+f′(x)-1)>0,從而由導(dǎo)數(shù)求解不等式.

解答 解:定義在R上的函數(shù)f(x)滿足f'(x)>1-f(x),可得f(x)+f′(x)-1>0,
令F(x)=exf(x)-ex-2,
則F′(x)=ex[f(x)+f′(x)-1]>0,
故F(x)是R上的單調(diào)增函數(shù),
而F(0)=e0f(0)-e0-2=0,
故不等式exf(x)<ex+3(其中e為自然對(duì)數(shù)的底數(shù))的解集為(-∞,0);
故選:B.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及利用函數(shù)求解不等式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)$(1-x){(2x+1)^5}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_5}{x^6}$,則a2等于30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a、b、c,且a•cosB+b•cosA=2c•cosB.
(1)求角B
(2)若$M=sinA({\sqrt{3}cosA-sinA})$,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)已知數(shù)列{an}的各項(xiàng)均為正數(shù),${b_n}=n{({1+\frac{1}{n}})^n}•{a_n}({n∈{N_+}})$,計(jì)算$\frac{b_1}{a_1}$,$\frac{{{b_1}{b_2}}}{{{a_1}{a_2}}}$,$\frac{{{b_1}{b_2}{b_3}}}{{{a_1}{a_2}{a_3}}}$,由此推測(cè)計(jì)算$\frac{{{b_1}{b_2}…{b_n}}}{{{a_1}{a_2}…{a_n}}}$的公式,并給出證明.
(2)求證:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…$\frac{1}{3n}$>$\frac{5}{6}$(n≥2,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.給出下面類比推理命題(其中R為實(shí)數(shù)集,C為復(fù)數(shù)集),正確的是( 。
A.若a,b∈R,則a-b>0⇒a>b,推出:若a,b∈C,則a-b>0⇒a>b
B.若a,b∈R,則a2+b2=0⇒a=b=0,推出:若a,b∈C,則a2+b2=0⇒a=b=0
C.若a,b∈R,則a-b=0⇒a=b,推出:若a,b∈C,則a-b=0⇒a=b
D.若x∈R,則|x|<1⇒-1<x<1,推出:若x∈C,則|x|<1⇒-1<x<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知x∈R,a=x2-1,b=2x+2.
(1)求a+b的取值范圍;
(2)用反證法證明:a,b中至少有一個(gè)大于等于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)A={θ|θ為銳角},B={θ|θ為小于90°的角},C={θ|θ為第一象限的角},D={θ|θ為小于90°的正角},則下列等式中成立的是(  )
A.A=BB.B=CC.A=CD.A=D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知${(2x-3)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,則a1+2a2+3a3+4a4+5a5=160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若a+bi=i2,其中a、b∈R,i為虛數(shù)單位,則a+b=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案