若-1<a<0,則下列不等式成立的是( )
A.
B.
C.
D.
【答案】分析:可結(jié)合指數(shù)函數(shù)的圖象直接比較大。部梢岳弥笖(shù)函數(shù)和冪函數(shù)的單調(diào)性進(jìn)行比較.
解答:解:在同一坐標(biāo)系中畫(huà)出y=2x、y=和y=(0.5)x,
如圖所示,當(dāng)-1<a<0,
故選C.
點(diǎn)評(píng):本題考查比較大小知識(shí),同時(shí)考查函數(shù)性質(zhì)和圖象的應(yīng)用、數(shù)形結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中
①對(duì)于每一個(gè)實(shí)數(shù)x,f(x)是y=2-x2和y=x這兩個(gè)函數(shù)中的較小者,則f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,則x1+x2=3.
③函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),其定義域?yàn)閇a-1,2a],則f(x)的圖象是以(0,1)為頂點(diǎn),開(kāi)口向下的拋物線.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},則P∩Q={x|x=15m-8,m∈N+}
⑤若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中正確的命題的序號(hào)是
①②④⑤
①②④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)若函數(shù)f(x)滿足:在定義域內(nèi)存在實(shí)數(shù)x0,使f(x0+k)=f(x0)+f(k)(k為常數(shù)),則稱“f(x)關(guān)于k可線性分解”
(1)函數(shù)f(x)=2x+x2是否關(guān)于1可線性分解?請(qǐng)說(shuō)明理由;
(2)已知函數(shù)g(x)=lnx-ax+1(a>0)關(guān)于a可線性分解,求a的范圍;
(3)在(2)的條件下,當(dāng)a取最小整數(shù)時(shí),求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)若函數(shù)f(x)滿足:在定義域內(nèi)存在實(shí)數(shù)x0,使f(x0+k)=f(x0)+f(k)(k為常數(shù)),則稱“f(x)關(guān)于k可線性分解”.
(1)函數(shù)f(x)=2x+x2是否關(guān)于1可線性分解?請(qǐng)說(shuō)明理由;
(2)已知函數(shù)g(x)=lnx-ax+1(a>0)關(guān)于a可線性分解,求a的范圍;
(3)在(2)的條件下,當(dāng)a取最小整數(shù)時(shí);
(i)求g(x)的單調(diào)區(qū)間;
(ii)證明不等式:(n!)2≤en(n-1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省茂名市高州市長(zhǎng)坡中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

下列命題中
①對(duì)于每一個(gè)實(shí)數(shù)x,f(x)是y=2-x2和y=x這兩個(gè)函數(shù)中的較小者,則f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,則x1+x2=3.
③函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),其定義域?yàn)閇a-1,2a],則f(x)的圖象是以(0,1)為頂點(diǎn),開(kāi)口向下的拋物線.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},則P∩Q={x|x=15m-8,m∈N+}
⑤若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中正確的命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年四川省成都市高考數(shù)學(xué)一診模擬試卷2(文科)(解析版) 題型:解答題

若函數(shù)f(x)滿足:在定義域內(nèi)存在實(shí)數(shù)x,使f(x+k)=f(x)+f(k)(k為常數(shù)),則稱“f(x)關(guān)于k可線性分解”
(1)函數(shù)f(x)=2x+x2是否關(guān)于1可線性分解?請(qǐng)說(shuō)明理由;
(2)已知函數(shù)g(x)=lnx-ax+1(a>0)關(guān)于a可線性分解,求a的范圍;
(3)在(2)的條件下,當(dāng)a取最小整數(shù)時(shí),求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案