精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的對稱軸為坐標軸,離心率為,且一個焦點坐標為

(1)求橢圓的方程;

(2)設直線與橢圓相交于兩點,以線段為鄰邊作平行四邊形,其中點在橢圓上, 為坐標原點,求點到直線的距離的最小值.

【答案】(1)(2)

【解析】試題分析:

(1)由題意可求得, ,橢圓的方程為.

(2)首先討論斜率存在的情況,點到直線的距離的最小值為.

當斜率不存在時額外討論可得結論.

試題解析:

解:(1)由已知設橢圓的方程為,則.

,得, ,∴橢圓的方程為.

(2)當直線斜率存在時,設直線的方程為.

則由消去.

.①

設點, , 的坐標分別是, .

∵四邊形為平行四邊形,∴

,

由于點在橢圓上,∴

從而,化簡得,經檢驗滿足①式.

又點到直線的距離為.

當且僅當時,等號成立.

當直線斜率不存在時,由對稱性知,點一定在軸上,

從而點的坐標為,直線的方程為,∴點到直線的距離為1.

∴點到直線的距離的最小值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數f(x)=3sin(2x﹣ )的圖象為C,下列結論中正確的是(
A.圖象C關于直線x= 對稱
B.圖象C關于點(﹣ ,0)對稱
C.函數f(x)在區(qū)間(﹣ , )內是增函數
D.由y=3sin2x的圖象向右平移 個單位長度可以得到圖象C

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,底面是邊長為的正方形,四邊形是矩形,平面平面, , 分別是的中點.

Ⅰ)求證: 平面

Ⅱ)求證:平面平面

Ⅲ)求多面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

(Ⅰ)已知,證明:

(Ⅱ)若對任意實數,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱中,側面底面,,且,點,,分別為,,的中點.

(Ⅰ)求證:平面

(Ⅱ)求證:平面

(Ⅲ)寫出四棱錐的體積.(只寫出結論,不需要說明理由)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖, 是圓的直徑,點在圓上,矩形所在的平面垂直于圓所在的平面,
(1)證明:平面⊥平面;
(2)當三棱錐的體積最大時,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小麗今天晚自習準備復習歷史、地理或政治中的一科,她用數學游戲的結果來決定選哪一科,游戲規(guī)則是:在平面直角坐標系中,以原點為起點,再分別以, , , 這5個點為終點,得到5個向量,任取其中兩個向量,計算這兩個向量的數量積,若,就復習歷史,若,就復習地理,若,就復習政治.

(1)寫出的所有可能取值;

(2)求小麗復習歷史的概率和復習地理的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】身穿紅、黃兩種顏色衣服的各有兩人,身穿藍顏色衣服的有一人,現將這五人排成一行,要求穿相同顏色衣服的人不能相鄰,則不同的排法共有( )

A. 24B. 28C. 36D. 48

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出以下說法:①不共面的四點中,任意三點不共線;

②有三個不同公共點的兩個平面重合;

③沒有公共點的兩條直線是異面直線;

④分別和兩條異面直線都相交的兩條直線異面;

一條直線和兩條異面直線都相交,則它們可以確定兩個平面.

其中正確結論的序號是_______.

查看答案和解析>>

同步練習冊答案