【題目】已知函數(shù) 的部分圖象如圖所示.
(1)求函數(shù) 的解析式,并寫出 的最小正周期;
(2)令 ,若在 內(nèi),方程 有且僅有兩解,求 的取值范圍.
【答案】
(1)解:由圖象可知: ,∴ ,又 ,∴ .
又∵點(diǎn) 在 圖象上,∴ ,∴ ,
∴ , ,又∵ ,∴ .
∴ ,最小正周期
(2)解:∵ ,
∴原方程可化為 ,則 .
∵ , ,∴ ,
∴ ,
令 ,則 ,作出 及 圖象,
當(dāng) 或 時(shí),兩圖象在 內(nèi)有且僅有一解,
即方程 在 內(nèi)有且僅有兩解,
此時(shí) 的取值范圍為
【解析】(1)根據(jù)圖形求得函數(shù)的最小周期進(jìn)而求得ω的值,再由圖像上的點(diǎn)求得φ的值,從而求得函數(shù)的解析式;(2)先結(jié)合(1)求得函數(shù)g(x)的函數(shù)式,從而可以化簡(jiǎn)所給方程,即可用x的三角函數(shù)式子表示出a,從而將方程有且只有兩解轉(zhuǎn)化為兩個(gè)圖像有且只有兩個(gè)交點(diǎn)的情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ , ]時(shí)f(x)的值域;
(2)在△ABC中,角A、B、C所對(duì)的邊為a,b,c,且角C為銳角,S△ABC= ,c=2,f(C+ )= ﹣ .求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率 ,焦距為 .
(1)求橢圓 的方程;
(2)已知橢圓 與直線 相交于不同的兩點(diǎn) ,且線段 的中點(diǎn)不在圓 內(nèi),求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校在軍訓(xùn)過程中要進(jìn)行打靶訓(xùn)練,給每位同學(xué)發(fā)了五發(fā)子彈,打靶規(guī)則:每個(gè)同學(xué)打靶過程中,若 連續(xù)兩發(fā)命中或者 連續(xù)兩發(fā)不中則要停止射擊,否則將子彈打完.假設(shè)張同學(xué)在向目標(biāo)射擊時(shí),每發(fā)子彈的命中率為 .
(1)求張同學(xué)前兩發(fā)只命中一發(fā)的概率;
(2)求張同學(xué)在打靶過程中所耗用的子彈數(shù)X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng) 時(shí),求 的最小值;
(2)若對(duì) ,都有 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線y=1+ 與直線y=k(x-2)+4有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α,β,γ是不重合的平面,a,b是不同的直線,則下列說法正確的是( )
A.“若a∥b,a⊥α,則b⊥α”是隨機(jī)事件
B.“若a∥b,aα,則b∥α”是必然事件
C.“若α⊥γ,β⊥γ,則α⊥β”是必然事件
D.“若a⊥α,a∩b=P,則b⊥α”是不可能事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x2的圖象在點(diǎn)(x0 , x02)處的切線為直線l,若直線l與函數(shù)y=lnx(x∈(0,1))的圖象相切,則滿足( )
A.x0∈( , )
B.x0∈(1, )
C.x0∈(0, )
D.x0∈( ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在這個(gè)正方體中,
① 與 平行;
② 與 是異面直線;
③ 與 是異面直線;
④ 與 是異面直線;
以上四個(gè)命題中,正確命題的序號(hào)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com