已知cos2x=
1
3
,x∈(
π
2
,π)
,則sin4x=
 
考點(diǎn):二倍角的正弦
專題:計(jì)算題,三角函數(shù)的求值
分析:先求出sin2x,再利用二倍角的正弦公式,即可得出結(jié)論.
解答: 解:∵cos2x=
1
3
,x∈(
π
2
,π)

∴sin2x=-
2
2
3
,
∴sin4x=2sin2xcos2x=2×(-
2
2
3
)×
1
3
=-
4
2
9

故答案為:-
4
2
9
點(diǎn)評(píng):本題考查二倍角的正弦公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+sinx,x∈[0,
π
2
]的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點(diǎn)為A,左焦點(diǎn)為F,上頂點(diǎn)為B,且∠BAO+∠BFO=90°(O為坐標(biāo)原點(diǎn)),則橢圓的離心率e=( 。
A、
5
-1
2
B、
1
2
C、
3
-1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
xlnx
1+x
,在x=x0處取得極值.
(1)證明:f(x0)=-x0;
(2)是否存在實(shí)數(shù)a,使得對(duì)任意x∈(0,+∞),f(x)≥
a(x-1)
x
?若存在,求a的所有值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-mx(m>0)在區(qū)間[0,2]上的最小值記為g(m)
(Ⅰ)若0<m≤4,求函數(shù)g(m)的解析式;
(Ⅱ)定義在(-∞,0)∪(0,+∞)的函數(shù)h(x)為偶函數(shù),且當(dāng)x>0時(shí),h(x)=g(x),若h(t)>h(4),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

國慶期間,某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若旅行團(tuán)人數(shù)在30人或30人以下,每人需交費(fèi)用為900元;若旅行團(tuán)人數(shù)多于30人,則給予優(yōu)惠:每多1人,人均費(fèi)用減少10元,直到達(dá)到規(guī)定人數(shù)75人為止.旅行社需支付各種費(fèi)用共計(jì)15000元.
(1)寫出每人需交費(fèi)用y關(guān)于人數(shù)x的函數(shù);
(2)旅行團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為其右支上的一點(diǎn)∠F1PF2=60°,且S△F1PF2=
23
,若|PF1|,
1
4
|F1F2|2,|PF2|成等差數(shù)列,則該雙曲線的離心率( 。
A、
3
B、2
3
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和記為Sn,a1=2,an+1=Sn+n.
(1)求{an}的通項(xiàng)公式;
(2)等差數(shù)列{bn}的各項(xiàng)為正,其前n項(xiàng)和為Tn,且T3=9,又a1+b1,a2+b2,a3+b3成等比數(shù)列,
①求{bn}的通項(xiàng)公式;
②求證:當(dāng)n≥2時(shí),
1
b12
+
1
b22
+…+
1
bn2
5
4

查看答案和解析>>

同步練習(xí)冊(cè)答案