已知命題p:“將函數(shù)y=sin(2x+θ)的圖象沿x軸向右平移
π
16
個單位后,得到一個關(guān)于y軸對稱的圖象”,命題q:“θ=kπ+
8
(k∈Z)”則p是q的 ( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:三角函數(shù)的圖像與性質(zhì),簡易邏輯
分析:求出命題p,q的等價條件,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.
解答: 解:將函數(shù)y=sin(2x+θ)的圖象沿x軸向右平移
π
16
個單位后,得到y(tǒng)=sin(2x-
π
8
+θ),此時函數(shù)關(guān)于y軸對稱的圖象,
則-
π
8
+θ=
π
2
+kπ,k∈Z,
即θ=kπ+
8
(k∈Z),
則p是q的充要條件,
故選:C
點(diǎn)評:本題主要考查充分條件和必要條件的判斷,根據(jù)三角函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若{an}是等差數(shù)列,首項a1>0,a2007+a2008>0,a2007•a2008<0,則使數(shù)列{an}的前n項和Sn為正數(shù)的最大自然數(shù)n是( 。
A、40013B、4014
C、4015D、4016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,C=2,a=30°,B=120°,則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域
(1)y=
x+1
+
1
2-x

(2)y=
log0.8(4x-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的側(cè)棱長和底面邊長均為2,且側(cè)棱AA1⊥底面ABC,其主視圖是邊長為2的正方形,則此三棱柱左視圖的面積為( 。
A、2
3
B、2
2
C、
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin(2π-α)cos(π+α)cos(
11π
2
+α)
sin(-π-α)sin(
2
+α)

(Ⅰ)化簡f(α);
(Ⅱ)若f(α)=
4
5
-cosα,且α∈(0,π),求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)A、B、C三種不同型號的轎車,產(chǎn)量之比依次為2:3:4,為了檢驗該公司的產(chǎn)品質(zhì)量,用分層抽樣的方法抽取一個容量為n的樣本,樣本中A種型號的轎車比B種型號的轎車少8輛,那么n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log0.5
x2+2x-8
的遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為[0,1],f(0)=f(1),且對任意不同的x1,x2都有|f(x2)-f(x1)|<|x2-x1|,求證:|f(x2)-f(x1)|≤
1
2

查看答案和解析>>

同步練習(xí)冊答案