分析 (1)由已知得到A的坐標(biāo),代入橢圓方程得到b,c的關(guān)系式,結(jié)合隱含條件即可求得橢圓的離心率;
(2)由離心率得到a,c的關(guān)系,寫(xiě)出直線l的方程,與橢圓方程聯(lián)立,求得B點(diǎn)坐標(biāo),由$\overrightarrow{PA}•\overrightarrow{PB}=0$求得c值,則橢圓方程可求.
解答 解:(1)由已知可知橢圓過(guò)點(diǎn)$A(\frac{a}{2},\frac{3c}{2})$,
代入方程有$\frac{{\frac{a^2}{4}}}{a^2}+\frac{{\frac{{9{c^2}}}{4}}}{b^2}=1$,得b2=3c2,
又a2=b2+c2,∴a2=4c2,
∴$e=\frac{1}{2}$;
(2)由$e=\frac{c}{a}=\frac{1}{2}$,得$\frac{a}{2}=c$,
∴點(diǎn)$A(c,\frac{3}{2}c)$,直線$l:y=\frac{1}{2}x+c$,
聯(lián)立$\left\{\begin{array}{l}y=\frac{1}{2}x+c\\ \frac{x^2}{{4{c^2}}}+\frac{y^2}{{3{c^2}}}=1\end{array}\right.$,解得B(-2c,0).
又P($\frac{1}{2}$,$\frac{9}{2}$),由已知$\overrightarrow{PA}•\overrightarrow{PB}=0$,
即$(c-\frac{1}{2},\frac{3}{2}c-\frac{9}{2})•(-2c-\frac{1}{2},-\frac{9}{2})=0$.
得$(\frac{1}{2}-c)(\frac{1}{2}+2c)-\frac{9}{2}(\frac{3c}{2}-\frac{9}{2})=0$.
解得c=2.
∴a=4,b2=a2-c2=12.
∴橢圓方程為$\frac{x^2}{16}+\frac{y^2}{12}=1$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了向量垂直與數(shù)量積關(guān)系的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
喜歡打籃球 | 不喜歡打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
P(K2≥k1) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k1 | 2.706 | 3.841 | 5.024 | 6.6335 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{10}}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,0] | B. | (-1,0) | C. | (-2,+∞) | D. | (-2,0] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com