已知橢圓的左右焦點為,過點且斜率為正數(shù)的直線交橢圓兩點,且成等差數(shù)列。
(1)求橢圓的離心率;
(2)若直線與橢圓交于兩點,求使四邊形的面積最大時的值。
解:(1)根據(jù)橢圓定義及已知條件,有
         
由上可解得
所以點為短軸端點,的離心率。
(2)由(1)可知,不妨設,則的坐標滿足,由此得
兩點到直線的距離分別為,因為兩點在直線的異側,則



,則
時,最大,進而有最大值。(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)  
已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)垂直于坐標軸的直線與橢圓相交于、兩點,若以為直徑的圓經過坐標原點.證明:圓的半徑為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知橢圓的長軸長為,離
心率
(1)求橢圓C的標準方程;
(2)若過點B(2,0)的直線(斜率不等于零)與橢圓C交于點E,F(xiàn),且,
求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)已知橢圓中心為,右頂點為,過定點直線交橢圓于、兩點.
(1)若直線軸垂直,求三角形面積的最大值;
(2)若,直線的斜率為,求證:;
(3)在軸上,是否存在一點,使直線的斜率的乘積為非零常數(shù)?若存在,求出點的坐標和這個常數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的兩個焦點F1(-,0),F2(,0),過F1且與坐標軸不平行的直線l1與橢圓相交于M,N兩點,△MNF2的周長等于8. 若過點(1,0)的直線l與橢圓交于不同兩點PQ,x軸上存在定點E(m,0),使·恒為定值,則E的坐標為(  ▲  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的一個焦點為(0,2)則的值為:( )
A.2B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的標準方程為,若橢圓的焦距為,則的取值集合為            。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分14分)已知橢圓上的點到兩個焦點的距離之和為。
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓交于兩點,且為坐標原點),求的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩個正數(shù)的等比中項,則圓錐曲線的離心率為 (     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案