已知數(shù)列{an},定直線l:(m+3)x-(2m+4)y-m-9=0,若(n,an)在直線l上,則數(shù)列{an}的前13項和為(  )
A、10B、21C、39D、78
考點:數(shù)列與解析幾何的綜合
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由點(n,an)(n∈N*)在直線l:(m+3)x-(2m+4)y-m-9=0上,可得an=
m+3
2m+4
n-
m+9
2m+4
,即可得到數(shù)列{an}的前13項和.
解答: 解:∵點(n,an)(n∈N*)在直線l:(m+3)x-(2m+4)y-m-9=0上,
∴(m+3)n-(2m+4)an-m-9=0,
∴an=
m+3
2m+4
n-
m+9
2m+4

∴數(shù)列{an}的前13項和S13=
13(
m+3
2m+4
-
m+9
2m+4
+
m+3
2m+4
×13-
m+9
2m+4
)
2
=39.
故選C.
點評:本題考查數(shù)列與解析幾何的綜合,考查了等差數(shù)列的前n項和公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cosx,
3
sinx),
b
=(cosx,-2cosx)設(shè)函數(shù)f(x)=
a
b

(1)求f(x)的單調(diào)增區(qū)間;
(2)若tanα=
2
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是邊長為2
3
的正三角形,且滿足
AD
=
1
3
(
AB
+
AC
),
AP
=
AD
+
1
2
BC
,則△APD的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
k
x
(k∈R)過點(2,0)
(1)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并證明;
(2)討論關(guān)于x的方程|f(x)|=t+
5
4
x(t∈R)的正根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是
 
.(填上所有正確命題的序號)
①對于函數(shù)y=f(x),若?x∈R,使得f(1-x0)=f(1+x0),則函數(shù)y=f(x)關(guān)于直線x=1對稱;
②函數(shù)f(x)=(x+1)lnx有2個零點;
③若關(guān)于x的不等式-
1
2
x2+2x>mx的解集為{x|0<x<2},則m=1;
④已知隨機變量ξ服從正態(tài)分布N(2,?2),且P(ξ<4)=0.8,則P(0<ξ<2)=0.3;
⑤等比數(shù)列{an}的前n項和為Sn,公比為q,已知S2=10,a1=9,則q=
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某化工廠近期要生產(chǎn)一批化工試劑,經(jīng)市場調(diào)查得知,生產(chǎn)這批試劑廠家的生產(chǎn)成本有以下三個方面:①生產(chǎn)1單位試劑需要原料費50元;②支付所有職工的工資總額由7500元的基本工資和每生產(chǎn)1單位試劑補貼20元組成;③后續(xù)保養(yǎng)的平均費用是每單位(x+
600
x
-30)元(試劑的總產(chǎn)量為x單位,50≤x≤200).
(Ⅰ)把生產(chǎn)每單位試劑的成本表示為x的函數(shù)關(guān)系P(x),并求出P(x)的最小值;
(Ⅱ)如果產(chǎn)品全部賣出,據(jù)測算銷售額Q(x)(元)關(guān)于產(chǎn)量x(單位)的函數(shù)關(guān)系為Q(x)=1240x-
1
30
x3,試問:當產(chǎn)量為多少時生產(chǎn)這批試劑的利潤最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“直線x=2kπ(k∈Z)”是“函數(shù)f(x)=2sin(x+
π
2
)圖象的對稱軸”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若曲線y=f(x)在(1,f(1))處的切線為l:y=2ex+b,求a,b的值;
(2)若函數(shù)f(x)在[-3,1]上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(3)若f(x)有兩個不同極值點m,n(m<n),且|m+n|≥|mn|-1,記F(x)=e2f(x)+g(x),求F(m)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=1,b=
3
,∠A=
π
6
,則∠B等于(  )
A、
π
3
B、
π
3
3
C、
π
6
6
D、
3

查看答案和解析>>

同步練習(xí)冊答案