已知函數(shù)f(n)=其中nN,則f(8)等于

[  ]
A.

2

B.

4

C.

6

D.

7

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:南通高考密卷·數(shù)學(理) 題型:044

已知函數(shù)f(x)=sin(ωx+)(其ω>0,x∈R)的圖像與x軸在原點右側的第一個交點為N(6,0),又f(2+x)=f(2-x),f(0)<0,求這個函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:黃岡新內參·高考(專題)模擬測試卷·數(shù)學 題型:044

已知函數(shù)f(x)=||,實數(shù)m、n在其定義域內,且m<n,f(m)=f(n).

(Ⅰ)求證:m+n>0;

(Ⅱ)試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省重點中學協(xié)作體2012屆高三第一次聯(lián)考數(shù)學理科試題 題型:044

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過點A(0,1),且在點A處切線的斜率為-1.

(Ⅰ)求f(x)的解析式;

(Ⅱ)設函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]D,使得g(x)在[m,n]上的值域也是[m,n],則稱區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.證明:當x>1時,函數(shù)f(x)不存在“保值區(qū)間”;

查看答案和解析>>

科目:高中數(shù)學 來源:湖南省長沙一中2012屆高三上學期第一次月考數(shù)學文科試題 題型:044

已知函數(shù)f(x)=lnx,g(x)=ax2+bx(a≠0).

(1)若a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域上是增函數(shù),求b的取值范圍;

(2)設函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省日照一中2012屆高三第七次階段復習達標檢測數(shù)學理科試題 題型:044

已知函數(shù)f(x)=lnx,g(x)=ax2+bx(a≠0)

(Ⅰ)若a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域上是增函數(shù),求b的取值范圍;

(Ⅱ)在(Ⅰ)的結論下,設函數(shù)(x)=e2x+bex,x∈[0,ln2],求函數(shù)(x)的最小值;

(Ⅲ)設函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于PQ,過線段PQ的中點Rx軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案