15.已知函數(shù)f(x)=|x+2|+|x-1|.
(1)求不等式f(x)>5的解集;
(2)若對于任意的實數(shù)x恒有f(x)≥|a-1|成立,求實數(shù)a的取值范圍.

分析 (1)問題轉(zhuǎn)化為解不等式組問題,求出不等式的解集即可;
(2)要使f(x)≥|a-1|對任意實數(shù)x∈R成立,得到|a-1|≤3,解出即可.

解答 解:(1)不等式f(x)>5即為|x+2|+|x-1|>5,
等價于$\left\{{\begin{array}{l}{x<-2}\\{-x-2-x+1>5}\end{array}}\right.$或$\left\{{\begin{array}{l}{-2≤x≤1}\\{x+2-x+1>5}\end{array}}\right.$或$\left\{{\begin{array}{l}{x>1}\\{x+2+x-1>5}\end{array}}\right.$,
解得x<-3或x>2,
因此,原不等式的解集為{x|x<-3或x>2};
(2)f(x)=|x+2|+|x-1|≥|(x+2)-(x-1)|=3,
要使f(x)≥|a-1|對任意實數(shù)x∈R成立,
須使|a-1|≤3,
解得:-2≤a≤4.

點評 本題考查了絕對值不等式問題,考查分類討論思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示,在四棱柱ABCD-A1B1C1D1中,底面ABCD是梯形,AD∥BC,側(cè)面ABB1A1為菱形,∠DAB=∠DAA1
(Ⅰ)求證:A1B⊥BC;
(Ⅱ)若AD=AB=3BC,∠A1AB=60°,點D在平面ABB1A1上的射影恰為線段A1B的中點,求平面DCC1D1與平面ABB1A1所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(理)試卷(解析版) 題型:填空題

在一次連環(huán)交通事故中,只有一個人需要負主要責任,但在警察詢問時,甲說:“主要責任在乙”;乙說:“丙應負主要責任”;丙說“甲說的對”;丁說:“反正我沒有責任”.四人中只有一個人說的是真話,則該事故中需要負主要責任的人是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=2sinxcos(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)y=f(x+1)定義域是{x|-2≤x≤3},則y=f(2|x|-1)的定義域是$[-\frac{5}{2},\frac{5}{2}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.將下列點的極坐標與直角坐標進行互化
①將點M的極坐標(4,$\frac{14}{3}$π)化成直角坐標;
②將點N的直角坐標(4,-4$\sqrt{3}$)化成極坐標(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.為了得到函數(shù)y=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)的圖象,只需將函數(shù)y=sinxcosx的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向右平移$\frac{π}{3}$個單位
C.向左平移$\frac{π}{6}$個單位D.向右平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.正項等比數(shù)列{an}滿足:a3=a2+2a1,若存在am,an,使得am•an=64a${\;}_{1}^{2}$,則$\frac{1}{m}$+$\frac{9}{n}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=$\frac{1}{3}$,anbn+1+bn+1=nbn
(I)求數(shù)列{an},{bn}的通項公式;
(II)記cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案