(本小題滿分14分)

定義在上的函數(shù)同時滿足以下條件:

上是減函數(shù),在上是增函數(shù); ② 是偶函數(shù);

處的切線與直線垂直.

(1)求函數(shù)的解析式;

(2)設,若存在,使,求實數(shù)的取值范圍.[

 

【答案】

解:(1). (2)為所求.

【解析】本題考查函數(shù)解析式的求法和求實數(shù)的取值范圍,考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學思想,培養(yǎng)學生的抽象概括能力、推理論證能力、運算求解能力和創(chuàng)新意識。

(Ⅰ)求出f′(x)=3ax2+2bx+c,由f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù),得到f′(1)=3a+2b+c=0,再由函數(shù)的奇偶性和切線方程能夠求出函數(shù)y=f(x)的解析式.

(Ⅱ)若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1,由此入手,結合題設條件,能夠求出實數(shù)m的取值范圍.

解:(1)……………………1

上是減函數(shù),在上是增函數(shù),

,           ()   ……………………3分

是偶函數(shù)得:,                 …………………4分

處的切線與直線垂直,,                          ……………………5分

代入()得:.    …………………6分

(2)由已知得:若存在,使,即存在,使.……………………8

,

,                …………………10分

=0,∵,∴,      

時,,∴上為減函數(shù),

時,,∴上為增函數(shù),

上有最大值.                

,∴最小值為. … 13分

于是有為所求.          ……………14分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案