【題目】如圖,將邊長為2的正方形沿對角線折疊,使得平面平面,又平面.
(1)若,求直線與直線所成的角;
(2)若二面角的大小為,求的長度.
【答案】(1);(2)
【解析】
(1)由題意可知,AB⊥AD, AE⊥平面ABD,以A為原點(diǎn),AB、AD、AE所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,作,垂足為,可得,得到C點(diǎn)坐標(biāo),利用向量法能求得,即可得到所求角.
(2)設(shè)的長度為,則,由題意知平面,可得平面的一個法向量為,再求得平面的法向量為, ,解得a即可.
∵正方形邊長為2 ∴,,
又平面,∴以點(diǎn)為原點(diǎn),,,所在直線為,,軸建立空間直角坐標(biāo)系.
作,垂足為,∵平面平面,平面,平面平面,∴平面∵ ∴點(diǎn)為的中點(diǎn),,
(1)∵
∴,,,,
∴, ∴
∴ ∴直線與直線所成角為;
(2)設(shè)的長度為,則
∵平面 ∴平面的一個法向量為
設(shè)平面的法向量為,又,
∴, ∴,解得:,取,則,
∴平面的一個法向量為
∴
∵二面角的大小為 ∴,解得:
∴的長度為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國于2015年10月宣布實(shí)施普遍二孩政策,為了解戶籍、性別對生育二胎選擇傾向的影響,某地從育齡群體中隨機(jī)抽取了容量為140的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)村戶籍各70人;男性60人,女性80人,繪制的不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例如圖所示,其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述正確的是( )
A.是否傾向選擇生育二胎與戶籍有關(guān)
B.是否傾向選擇生育二胎與性別有關(guān)
C.調(diào)查樣本里面傾向選擇生育二胎的人群中,男性人數(shù)少于女性人數(shù)
D.傾向選擇不生育二胎的人群中,農(nóng)村戶籍人數(shù)多于城鎮(zhèn)戶籍人數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑 | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.
(1)由以往統(tǒng)計數(shù)據(jù)知,設(shè)備的性能根據(jù)以下不等式進(jìn)行評判(表示相應(yīng)事件的概率);①;②;③,評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁.為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,試判斷設(shè)備的性能等級
(2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.
(i)若從設(shè)備的生產(chǎn)流水線上隨意抽取2件零件,求恰有一件次品的概率;
(ii)若從樣本中隨意抽取2件零件,計算其中次品個數(shù)分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記無窮數(shù)列的前n項(xiàng)中最大值為,最小值為,令,數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為.
(1)若數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,求;
(2)若數(shù)列是等差數(shù)列,試問數(shù)列是否也一定是等差數(shù)列?若是,請證明;若不是,請舉例說明;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不重合的直線,,是兩個不重合的平面,下列說法正確的是( )
A. 若,,,則
B. 若,,則
C. 若,,則
D. 若,,,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲,乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.
甲每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 | 4 |
對應(yīng)的天數(shù)/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 |
對應(yīng)的天數(shù)/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出與的函數(shù)關(guān)系式;
(2)如果將統(tǒng)計的100天中產(chǎn)生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤不少于1950元的人數(shù)之和,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①在線性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;
②兩個變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1;
③在回歸直線方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量平均減少0.5個單位;
④兩個模型中殘差平方和越小的模型擬合的效果越好.
⑤回歸直線恒過樣本點(diǎn)的中心,且至少過一個樣本點(diǎn);
⑥若的觀測值滿足≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病;
⑦從統(tǒng)計量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤. 其中正確命題的序號是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com