如圖已知:菱形所在平面與直角梯形所在平面互相垂直,,點分別是線段的中點.
(1)求證:平面平面;
(2)點在直線上,且//平面,求平面與平面所成角的余弦值。
(1)證明詳見解析;(2).
解析試題分析:(1)先證,由面面垂直的性質(zhì)定理得到平面,所以,由勾股定理證,所以由線面垂直的判定定理得平面,所以面面垂直的判定定理得平面平面;(2)首先建立空間直角坐標系,再寫出各點坐標,由共面向量定理,得,所以求出,得出點的坐標是:,由(1)得平面的法向量是,根據(jù)條件得平面的法向量是,所以.
試題解析:(1)證明:在菱形中,因為,所以是等邊三角形,
又是線段的中點,所以,
因為平面平面,所以平面,所以; 2分
在直角梯形中,,,得到:,
從而,所以, 4分
所以平面,又平面,所以平面平面; 6分
(2)由(1)平面,如圖,分別以所在直線為軸,軸,軸建立空間直角坐標系,
則,
7分
設(shè)點的坐標是,則共面,
所以存在實數(shù)使得:
,
得到:.即點的坐標是:, 8分
由(1)知道:平面的法向量是,
設(shè)平面的法向量是,
則:, 9分
令,則,即,
所以, 11分
即平面與平面
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,點M是A1B的中點,點N是B1C的中點,連接MN
(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED是邊長為2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求幾何體ABCDFE的體積;
(Ⅱ)證明:平面ADE∥平面BCF;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點.該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(Ⅰ)證明:平面;
(Ⅱ)證明:∥平面;
(Ⅲ)線段上是否存在點,使與所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點H,CH是否與面ABD垂直。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com