三棱錐P-ABC的高PO=8,AC=BC=3,∠ACB=30°,M、N分別在BC和PO上,且CM=x,PN=3CM,試問下面的四個圖象中,那個圖象大致描繪了三棱錐N-AMC的體積V與x的變化關系(x∈[0,3])( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)
分析:由題意直接求出三棱錐N-AMC的體積V與x變化關系,通過函數(shù)表達式,確定函數(shù)的圖象即可.
解答:解:底面三角形ABC的邊AC=3,CM=x,∠ACB=30°,
∴△ACM的面積為:
1
2
x•3•sin30°
=
3
4
x

又∵三棱錐N-AMC的高NO=PO-PN=8-3x
所以三棱錐N-AMC的體積V=
1
3
(8-3x)
3
4
x
=-
3
4
x2+2x

當x=
4
3
時取得最大值,開口向下的二次函數(shù),
故選A.
點評:本題是基礎題,考查幾何體的體積與函數(shù)之間的關系,求出底面三角形的面積,是本題的一個關鍵步驟,通過二次函數(shù)研究幾何體的體積的變化趨勢是本題的特點,是好題,新穎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、三棱錐P-ABC的高為PH,若三個側(cè)面兩兩垂直,則H為△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正三棱錐P-ABC的高PO=4,斜高為2
5
,經(jīng)過PO的中點且平行于底面的截面的面積
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐P-ABC的高為PH,若三條側(cè)棱相等,則H為△ABC的(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐P-ABC的高為PH,若三條側(cè)棱與底面所成的角相等,則H為△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐P-ABC的高為PH,若P到△ABC的三邊的距離相等,若H在△ABC內(nèi),則H為△ABC的( 。

查看答案和解析>>

同步練習冊答案