12.計算
(1)lg 8+lg 125-($\frac{1}{7}$)-2+16${\;}^{\frac{3}{4}}$+($\sqrt{3}$-1)0
(2)已知tanα=3,求$\frac{2sinα-cosα}{sinα+3cosα}$的值.

分析 (1)利用對數(shù)的運算法則、分數(shù)指數(shù)冪的運算法則,化簡所給的式子,可得結果.
(2)利用同角三角函數(shù)的基本關系,吧要求的式子化為 $\frac{2tanα-1}{tanα+3}$,可得結果.

解答 解:(1)lg 8+lg 125-($\frac{1}{7}$)-2+16${\;}^{\frac{3}{4}}$+($\sqrt{3}$-1)0 =lg1000-49+23+1=3-49+8+1=-37.
(2)∵tanα=3,∴$\frac{2sinα-cosα}{sinα+3cosα}$=$\frac{2tanα-1}{tanα+3}$=$\frac{6-1}{3+3}$=$\frac{5}{6}$.

點評 本題主要考查對數(shù)的運算法則、分數(shù)指數(shù)冪的運算法則的應用,同角三角函數(shù)的基本關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.在平面直角坐標系xOy中,已知點P為函數(shù)y=2lnx的圖象與圓M:(x-3)2+y2=r2的公共點,且它們在點P處有公切線,若二次函數(shù)y=f(x)的圖象經過點O,P,M,則y=f(x)的最大值為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若直線l的方向向量為$\overrightarrow$,平面α的法向量為$\overrightarrow{n}$,則可能使l∥α的是(  )
A.$\overrightarrow$=(1,0,0),$\overrightarrow{n}$=(-2,0,0)B.$\overrightarrow$=(1,3,5),$\overrightarrow{n}$=(1,0,1)
C.$\overrightarrow$=(0,2,1),$\overrightarrow{n}$=(-1,0,-1)D.$\overrightarrow$=(1,-1,3),$\overrightarrow{n}$=(0,3,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.直線過點(-3,-2)且在兩坐標軸上的截距相等,則該直線方程為( 。
A.2x-3y=0B.x+y+5=0
C.2x-3y=0或x+y+5=0D.x+y+5=0或x-y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-4x,x<\frac{1}{2}\\{log_{\frac{1}{2}}}(2x+1),x≥\frac{1}{2}\end{array}\right.$
(1)求$f(\frac{3}{2}),f({f(\frac{1}{2})})$的值;
(2)求不等式f(x)>-3的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=log2(x2+x)則f(x)的單調遞增區(qū)間是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=x2+2(a-1)x+b在區(qū)間(-∞,4]上遞減,則a的取值范圍是( 。
A.[-3,+∞)B.(-∞,-3]C.(-∞,5]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,$f(x)={(\frac{1}{2})^x}+1$
(1)求函數(shù)f(x)的解析式
(2)畫出函數(shù)的圖象,根據(jù)圖象寫出函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合I,M,N的關系如圖所示,則I,M,N的關系為( 。
A.(∁IM)?(∁IN)B.M⊆(∁IN)C.(∁IM)⊆(∁IN)D.M?(∁IN)

查看答案和解析>>

同步練習冊答案