(本題滿分14分)

醫(yī)學上為研究某種傳染病傳播過程中病毒細胞的發(fā)展規(guī)律及其預防,將病毒細胞注入一只小白鼠體內(nèi)進行實驗,經(jīng)檢測,病毒細胞在體內(nèi)的總數(shù)與天數(shù)的關系記錄如下表.已知該種病毒細胞在小白鼠體內(nèi)的個數(shù)超過的時候小白鼠將死亡.但注射某種藥物,將可殺死此時其體內(nèi)該病毒細胞的.

(Ⅰ) 為了使小白鼠在實驗過程中不死亡,第一次最遲應在何時注射該種藥物?(精確到天)

(Ⅱ)第二次最遲應在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)

(參考數(shù)據(jù):)

 

【答案】

 

(Ⅰ)27天

(Ⅱ)再經(jīng)過6天必須注射藥物,即第二次應在第33天注射藥物

【解析】

(Ⅰ)由題意病毒細胞總數(shù)關于時間的函數(shù)關系式為(其中), …3分

則由,兩邊取常用對數(shù)得,從而…6分

    即第一次最遲應在第27天注射該種藥物.  ……………………………7分

(Ⅱ)由題意注入藥物后小白鼠體內(nèi)剩余的病毒細胞為, …………8分

再經(jīng)過天后小白鼠體內(nèi)病毒細胞為,………………10分

由題意, ………………………11分

兩邊取常用對數(shù)得,解得……………13分

故再經(jīng)過6天必須注射藥物,即第二次應在第33天注射藥物.………………14分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABEAEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案