為等差數(shù)列中的第8項(xiàng),則二項(xiàng)式展開式中常數(shù)項(xiàng)是第    項(xiàng)

 

【答案】

9

【解析】

試題分析:為等差數(shù)列中的第8項(xiàng),即-4+(8-1)[(-2)-(-4)]=10;展開式中的通項(xiàng)為,令得,r=8,故展開式中常數(shù)項(xiàng)是第9  項(xiàng).

考點(diǎn):本題主要考查等差數(shù)列的通項(xiàng)公式,二項(xiàng)式展開式的通項(xiàng)公式。

點(diǎn)評(píng):小綜合題,解的思路明確,先n,再利用二項(xiàng)式展開式的通項(xiàng)公式,求解。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若n為等差數(shù)列-4,-2,0,…中的第8項(xiàng),則二項(xiàng)式(x2+
2
x
)n
展開式中常數(shù)項(xiàng)是第
 
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,已知a3=8,a6=64.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a3,a5分別為等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),試求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)若數(shù)列{bn}滿足:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí).
則{cn}是公差為8的準(zhǔn)等差數(shù)列.
(1)求上述準(zhǔn)等差數(shù)列{cn}的第8項(xiàng)c8、第9項(xiàng)c9以及前9項(xiàng)的和T9;
(2)設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式;
(3)設(shè)(2)中的數(shù)列{an}的前n項(xiàng)和為Sn,若S63>2012,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:閘北區(qū)一模 題型:解答題

若數(shù)列{bn}滿足:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí).
則{cn}是公差為8的準(zhǔn)等差數(shù)列.
(1)求上述準(zhǔn)等差數(shù)列{cn}的第8項(xiàng)c8、第9項(xiàng)c9以及前9項(xiàng)的和T9;
(2)設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式;
(3)設(shè)(2)中的數(shù)列{an}的前n項(xiàng)和為Sn,若S63>2012,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案