【題目】已知點(diǎn)在函數(shù)的圖象上,數(shù)列的前項(xiàng)和為,數(shù)列的前 項(xiàng)和為,且的等差中項(xiàng).

)求數(shù)列的通項(xiàng)公式.

)設(shè),數(shù)列滿足,.求數(shù)列的前項(xiàng)和

)在()的條件下,設(shè)是定義在正整數(shù)集上的函數(shù),對(duì)于任意的正整數(shù),,恒有成立,且為常數(shù),),試判斷數(shù)列是否為等差數(shù)列,并說明理由.

【答案】(1) ;(2) ;(3)見解析.

【解析】分析:(1)本題考查求數(shù)列的通項(xiàng)公式,用數(shù)列的前n項(xiàng)和求是列的通項(xiàng)公式,注意對(duì)于第一項(xiàng)的驗(yàn)證,又根據(jù)等比中項(xiàng)解決問題,這一道題目比較困難,第一問考查的內(nèi)容較多.
(2)構(gòu)造新數(shù)列,構(gòu)造數(shù)列時(shí)按照一般的方式來整理,整理后發(fā)現(xiàn)結(jié)果比較簡(jiǎn)單,利用等比數(shù)列的前n項(xiàng)和公式求數(shù)列的和.
(3)本題證明數(shù)列是一個(gè)等差數(shù)列,應(yīng)用等差數(shù)列的定義來證明,只要數(shù)列的連續(xù)兩項(xiàng)之差是一個(gè)常數(shù),問題得證,證明是一個(gè)常數(shù)的過程是一個(gè)數(shù)列和函數(shù)綜合的過程,用到所給的函數(shù)的性質(zhì).

詳解:

)依題意得,故

,即

所以,當(dāng)時(shí),

也適合上式,

)因?yàn)?/span>,

,因此

由于,所以是首項(xiàng)為,公比為的等比數(shù)列.

所以,所以

所以

)方法一:

,

所以

因?yàn)橐阎?/span>為常數(shù),則數(shù)列是等差數(shù)列.

方法二:

因?yàn)?/span>成立,且

所以,

,

,

所以

所以數(shù)列是等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若,時(shí),有.

(1)證明上是增函數(shù);

(2)解不等式

(3)若對(duì),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊長(zhǎng)為,,,將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),

)求證:平面

)求證:平面平面

)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若關(guān)于的不等式的解集為,求實(shí)數(shù)的取值范圍

若關(guān)于的不等式的解集是,求的值

若關(guān)于的不等式的解集是,集合,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:,則;②,,則;③,則;④;⑤,,則,;⑥正數(shù)滿足,則的最小值為.其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的離心率為2,右焦點(diǎn)到它的一條漸近線的距離為 。

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)是否存在過點(diǎn)且與雙曲線的右支角不同的兩點(diǎn)的直線,當(dāng)點(diǎn)滿足時(shí),使得點(diǎn)在直線上的射影點(diǎn)滿足?若存在,求出直線的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是城市交通的一道亮麗的風(fēng)景,給人們短距離出行帶來了很大的方便.某!眴诬嚿鐖F(tuán)”對(duì)市年齡在歲騎過共享單車的人群隨機(jī)抽取人調(diào)查,騎行者的年齡情況如下圖顯示。

(1)已知年齡段的騎行人數(shù)是兩個(gè)年齡段的人數(shù)之和,請(qǐng)估計(jì)騎過共享單車人群的年齡的中位數(shù);

(2)從兩個(gè)年齡段騎過共享單車的人中按的比例用分層抽樣的方法抽取人,從中任選人,求兩人都在)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形中, 邊所在直線的方程為,點(diǎn)邊所在直線上.

)求邊所在直線的方程.

)求矩形外接圓的方程.

)若過點(diǎn)作題()中的圓的切線,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(l,2)在函數(shù)f(x)=ax3的圖象上,則過點(diǎn)A的曲線C:y=fx)的切線方程是( 。

A. 6x﹣y﹣4=0 B. x﹣4y+7=0

C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0

查看答案和解析>>

同步練習(xí)冊(cè)答案