16.若集合A={y|y=2x+2},B={x|-x2+x+2≥0},則(  )
A.A⊆BB.A∪B=RC.A∩B={2}D.A∩B=∅

分析 y=2x+2>2,可得集合A=(2,+∞).由-x2+x+2≥0,化為x2-x-2≤0,解出可得B=[-1,2].再利用集合的運(yùn)算性質(zhì)即可得出.

解答 解:y=2x+2>2,∴集合A={y|y=2x+2}=(2,+∞).
由-x2+x+2≥0,化為x2-x-2≤0,解得-1≤x≤2.
∴B={x|-x2+x+2≥0}=[-1,2].
∴A∩B=∅,
故選:D.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算性質(zhì)、不等式的解法、函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,兩曲線的一個(gè)交點(diǎn)為P,若|PF|=5,則雙曲線漸近線方程為x2-$\frac{{y}^{2}}{3}$=1,若Q為雙曲線左支的點(diǎn),則三角形FPQ面積最小值是4$\sqrt{6}$-$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}中,an+1=Sn-n+3,n∈N*,a1=2,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1、2、3、4、5、6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.
(1)設(shè)復(fù)數(shù)z=a+bi(i為虛數(shù)單位),求事件“z-3i為實(shí)數(shù)”的概率;
(2)求點(diǎn)P(a,b)落在不等式組$\left\{\begin{array}{l}{a-b+2≥0}\\{0≤a≤4}\\{b≥0}\end{array}\right.$,表示的平面區(qū)域內(nèi)(含邊界)的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線(a-2)x+ay-1=0與直線2x+3y+5=0平行,則a的值為( 。
A.-6B.6C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.($\sqrt{x}$+$\frac{1}{x}$)8的展開式中的中間項(xiàng)為$\frac{70}{{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.張帆手上有只股票“梅雁吉樣”(股票代碼:600868)昨天得了個(gè)漲停板(上漲10%),今天恰得了個(gè)跌停板(下跌10%),那么這兩天張帆就“梅雁吉樣”這只股票的收益為( 。
A.B.C.不贏不虧D.不知道

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等差數(shù)列{an}中,S2=4,S4=9,則S6=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=x-${e^{\frac{x}{a}}}$存在單調(diào)遞減區(qū)間,且y=f(x)的圖象在x=0處的切線l與曲線y=ex相切,符合情況的切線l( 。
A.有3條B.有2條C.有1條D.不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案