【題目】已知函數(shù),若的圖象上相鄰兩條對稱軸的距離為,圖象過點.

1)求的表達式和的遞增區(qū)間;

2)將函數(shù)的圖象向右平移個單位長度,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且只有一個零點,求實數(shù)的取值范圍.

【答案】1,的遞增區(qū)間為.(2

【解析】

1)由兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù),相鄰兩條對稱軸的距離為,可得周期,從而得,再代入坐標;

(2)由三角函數(shù)圖象變換得,題意轉(zhuǎn)化為的圖象與直線上只有一個公共點,結(jié)合函數(shù)圖象易得結(jié)論.

1,

的最小正周期為,∴.

的圖象過點,∴,∴

.

,,,

的遞增區(qū)間為,.

2)將函數(shù)的圖象向右平移個單位長度,可得的圖象,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象.

,∴,∴,故在區(qū)間上的值域為.

若函數(shù)在區(qū)間上有且只有一個零點,

即函數(shù)的圖象和直線只有一個公共點,

如圖,

根據(jù)圖象可知,,即.

故實數(shù)的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人投籃的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲與乙的命中率之和.若甲與乙各投籃一次,每人投籃相互獨立,則他們都命中的概率為0.18.

1)求甲、乙、丙三人投籃的命中率;

2)現(xiàn)要求甲、乙、丙三人各投籃一次,假設(shè)每人投籃相互獨立,記三人命中總次數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知圓的參數(shù)方程為為參數(shù),).以原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程是.

(1)若直線與圓有公共點,試求實數(shù)的取值范圍;

(2)當時,過點且與直線平行的直線交圓兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中,,.若點的中點,點靠近點的四等分點.

1)求證:平面;

2)若三棱臺的體積為,求三棱錐的體積.

注:臺體體積公式:,或在分別為臺體上下底面積,為臺體的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(

A.向左平移個單位長度,縱坐標縮短到原來的,橫坐標不變

B.向左平移個單位長度,縱坐標伸長到原來的3倍橫坐標不變

C.向右平移個單位長度,縱坐標縮短到原來的,橫坐標不變

D.向右平移個單位長度,縱坐標伸長到原來的3倍,橫坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面為直角梯形,,,,,的中點,平面平面,上一點,平面.

1)求證:平面平面;

2)若與底面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】PM25是衡量空氣質(zhì)量的重要指標,我國采用世衛(wèi)組織的最寬值限定值,即PM25日均值在以下空氣質(zhì)量為一級,在空氣質(zhì)量為二級,超過為超標,如圖是某地11日至10日的PM25(單位:)的日均值,則下列說法正確的是(

A.10天中PM25日均值最低的是13

B.1日到6PM25日均值逐漸升高

C.10天中恰有5天空氣質(zhì)量不超標

D.10天中PM25日均值的中位數(shù)是43

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐PABCD中,平面PAC⊥平面ABCD,且有ABDCACCDDAAB.

1)證明:BCPA;

2)若PAPCAC,求平面PAD與平面PBC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,是橢圓上一點.

1)求橢圓的方程;

2)若直線的斜率為,且直線交橢圓、兩點,點關(guān)于原點的對稱點為,點是橢圓上一點,判斷直線的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.

查看答案和解析>>

同步練習冊答案