12分)求一個(gè)球與它的外切圓柱、外切等邊圓錐(圓錐的軸截面為正三角形)的三個(gè)體積之比。

解析試題分析:設(shè)球的半徑為R,則外切圓柱的半徑為R,高為2R;外切等邊圓錐底面半徑為,高為3R,
所以 ,

考點(diǎn):本題考查空間幾何體的體積。
點(diǎn)評(píng):本題的關(guān)鍵是由球的半徑求出外切圓柱、外切等邊圓錐的半徑和高?疾榱丝臻g想象力。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知一個(gè)四棱錐的三視圖如圖所示,其中,且,分別為、、的中點(diǎn)

(1)求證:PB//平面EFG
(2)求直線PA與平面EFG所成角的大小
(3)在直線CD上是否存在一點(diǎn)Q,使二面角的大小為?若存在,求出CQ的長(zhǎng);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,長(zhǎng)方體中,,的中點(diǎn)。

(1)求證:直線∥平面;
(2)求證:平面平面;
(3)求證:直線平面。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知正方形ABCD的邊長(zhǎng)為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動(dòng)點(diǎn).
(1)設(shè)N為EF上一點(diǎn),當(dāng)時(shí),有DN ∥平面AEM,求 的值;
(2)試探究點(diǎn)M的位置,使平面AME⊥平面AEF。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,正方體中, E是的中點(diǎn).

(1)求證:∥平面AEC;
(2)求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,在長(zhǎng)方體中,,,點(diǎn)在棱上移動(dòng).

⑴ 證明://平面;
⑵證明:;
⑶ 當(dāng)的中點(diǎn)時(shí),求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)

(1)求證:P-ABC為正四面體;
(2)棱PA上是否存在一點(diǎn)M,使得BM與面ABC所成的角為45°?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說明理由。
(3)設(shè)棱臺(tái)DEF-ABC的體積為V=, 是否存在體積為V且各棱長(zhǎng)均相等的平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和,并且該平行六面體的一條側(cè)棱與底面兩條棱所成的角均為60°? 若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)平行六面體,并給出證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在平面四邊形中,是正三角形,,.  
(Ⅰ)將四邊形的面積表示成關(guān)于的函數(shù);
(Ⅱ)求的最大值及此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖(1),△是等腰直角三角形,分別為的中點(diǎn),將△沿折起,使在平面上的射影恰好為的中點(diǎn),得到圖(2)。


(Ⅰ)求證:;(Ⅱ)求三棱錐的體積。

查看答案和解析>>

同步練習(xí)冊(cè)答案