函數(shù)y=log
15
(x2+3x-4)
的單調(diào)遞減區(qū)間是
(1,+∞)
(1,+∞)
分析:由y=log
1
5
(x2+3x-4)
,知x2+3x-4>0,再由拋物線t=x2+3x-4開口向上,對稱軸方程為x=-
3
2
,根據(jù)復(fù)合函數(shù)的單調(diào)性的性質(zhì),能求出函數(shù)y=log
1
5
(x2+3x-4)
的單調(diào)遞減區(qū)間.
解答:解:∵y=log
1
5
(x2+3x-4)
,
∴x2+3x-4>0,
解得x<-4,或x>1.
∵拋物線t=x2+3x-4開口向上,對稱軸方程為x=-
3
2
,
∴根據(jù)復(fù)合函數(shù)的單調(diào)性的性質(zhì),知函數(shù)y=log
1
5
(x2+3x-4)
的單調(diào)遞減區(qū)間是(1,+∞).
故答案為:(1,+∞).
點評:本題考查復(fù)合函數(shù)的單調(diào)性的求法,是基礎(chǔ)題.解題時要認真審題,仔細解答,注意對數(shù)函數(shù)性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log15(4x-3)
的定義域是( 。
A、(
3
4
,1]
B、[
3
4
,1)
C、(
3
4
,+∞)
D、[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案