![](http://thumb.zyjl.cn/pic5/upload/201306/51d5f2ec0fb5c.png)
解:由題意結(jié)合圖象
(1)設(shè)x+y=b,故y=-x+b,字母b為斜率為-1的直線的截距,由圖可知:
當(dāng)直線(黑色)過點(diǎn)B(-3,-1)時(shí),截距最小,即x+y取最小值-3+(-1)=-4,
當(dāng)直線與半圓相切時(shí),截距最大,即x+y取最大值,
由直線和圓相切可得圓心O′(-2,0)到直線x+y=b的距離
![](http://thumb.zyjl.cn/pic5/latex/128373.png)
=1,(圓的半徑為1),
可解得b=-2+
![](http://thumb.zyjl.cn/pic5/latex/53.png)
,或b=-2-
![](http://thumb.zyjl.cn/pic5/latex/53.png)
(由圖象可知不和題意,故舍去),
故求x+y的最大值和最小值分別為-2+
![](http://thumb.zyjl.cn/pic5/latex/53.png)
,-4;
(2)設(shè)
![](http://thumb.zyjl.cn/pic5/latex/128374.png)
,則k表示可行域內(nèi)動點(diǎn)P(x,y)與定點(diǎn)M(1,0)連線的斜率,…(5分)
由直線kx-y-k=0得,
![](http://thumb.zyjl.cn/pic5/latex/116966.png)
得
![](http://thumb.zyjl.cn/pic5/latex/128375.png)
,知
![](http://thumb.zyjl.cn/pic5/latex/128376.png)
,…(6分)
又
![](http://thumb.zyjl.cn/pic5/latex/128377.png)
,…(7分)
故
![](http://thumb.zyjl.cn/pic5/latex/128378.png)
; …(8分)
(3)設(shè)t=x
2+y
2-2x-2y+2=(x-1)
2+(y-1)
2,表示可行域內(nèi)的動點(diǎn)P(x,y)與定點(diǎn)N(1,1)距離的平方,
由距離公式可得|NO
′|=
![](http://thumb.zyjl.cn/pic5/latex/128379.png)
=
![](http://thumb.zyjl.cn/pic5/latex/186.png)
,故t
min=
![](http://thumb.zyjl.cn/pic5/latex/128380.png)
=11-2
![](http://thumb.zyjl.cn/pic5/latex/186.png)
,
由圖可知點(diǎn)B到N的距離最大,|NB|=
![](http://thumb.zyjl.cn/pic5/latex/128381.png)
=
![](http://thumb.zyjl.cn/pic5/latex/1388.png)
,故t
max=20 …(12分)
分析:由圖象分析,(1)x+y可轉(zhuǎn)化為截距;(2)
![](http://thumb.zyjl.cn/pic5/latex/10479.png)
表示斜率(3)x
2+y
2-2x-2y+2=(x-1)
2+(y-1)
2,表示可行域內(nèi)的動點(diǎn)P(x,y)與定點(diǎn)N(1,1)距離的平方,結(jié)合圖形易得其最值.
點(diǎn)評:本題考查線性規(guī)劃問題,利用幾何意義來求解是解決問題的關(guān)鍵,屬中檔題.