、已知直線.
(1) 當(dāng)時(shí),求的交點(diǎn);
(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,恒成立,求的取值范圍。
(1)  
(2)  設(shè)
所以      
所以    所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如題(9)圖,過雙曲線上左支一點(diǎn)作兩條相互垂直的直線分別過兩焦點(diǎn),其中一條與雙曲線交于點(diǎn),若是等腰三角形,則雙曲線的離心率為( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.光線被曲線反射,等效于被曲線在反射點(diǎn)處的切線反射.已知光線從橢圓的一個(gè)焦點(diǎn)出發(fā),被橢圓反射后要回到橢圓的另一個(gè)焦點(diǎn);光線從雙曲線的一個(gè)焦點(diǎn)出發(fā)被雙曲線反射后的反射光線等效于從另一個(gè)焦點(diǎn)發(fā)出;如題10圖,橢圓與雙曲線有公共焦點(diǎn),現(xiàn)一光線從它們的左焦點(diǎn)出發(fā),在橢圓與雙曲線間連續(xù)反射,則光線經(jīng)過次反射后回到左焦點(diǎn)所經(jīng)過的路徑長(zhǎng)為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)組成一個(gè)正三角形,焦點(diǎn)到橢圓長(zhǎng)軸端點(diǎn)的最短距離為,求此橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1、F2是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足∣P F1∣·∣P F2∣=32,則∠F1PF2是(    )
鈍角   (B)直角         (C)銳角      (D)以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是長(zhǎng)度為定值的平面的斜線段,點(diǎn)為斜足,若點(diǎn)在平面內(nèi)運(yùn)動(dòng),使得的面積為定值,則動(dòng)點(diǎn)P的軌跡是

A.圓            B.橢圓         C一條直線      D兩條平行線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)
已知中心在原點(diǎn),一焦點(diǎn)為F(0,)的橢圓被直線截得的弦的中點(diǎn)橫坐標(biāo)為,求此橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有對(duì)稱中心的曲線叫做有心曲線,過有心曲線中心的弦叫做有心曲線的直徑。定理:如果圓上異于一條直徑兩個(gè)端點(diǎn)的任意一點(diǎn)與這條直徑兩個(gè)端點(diǎn)連線的斜率存在,則這兩條直線的斜率乘積為定值-1。寫出該定理在有心曲線中的推廣           。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列四個(gè)關(guān)于圓錐曲線的命題:
①已知M(-2,0)、N(2,0),|PM|+|PN|=3,則動(dòng)點(diǎn)P的軌跡是一條線段;
②從雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離等于它的虛半軸長(zhǎng);
③雙曲線與橢圓有共同的準(zhǔn)線;
④關(guān)于x的方程x2-mx+1=0(m>2)的兩根可分別作為橢圓和雙曲線的離心率.
其中正確的命題是        .(填上你認(rèn)為正確的所有命題序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案