【題目】已知圓與直線相切于,且圓心在直線上.
(1)求圓的方程;
(2)已知直線經(jīng)過原點(diǎn),并且被圓截得的弦長為2,求直線的方程.
【答案】(1)(2)或
【解析】
(1)設(shè)出圓心坐標(biāo),根據(jù)題意得出圓心到直線的距離和圓心到點(diǎn)距離相等,求解出圓心坐標(biāo),進(jìn)而求出圓的方程.
(2)分類討論直線的斜率存在和不存在兩種情況,利用被圓截得的弦長為,求出直線的斜率,即可求得答案.
(1)圓的圓心在直線上,設(shè)所求圓心坐標(biāo)為,
又因?yàn)閳A與直線 相切于,
則由條件可得,化簡為,解得,所以圓心為,半徑,故所求圓的方程為;
(2)直線經(jīng)過原點(diǎn),并且被圓截得的弦長為2,
①當(dāng)直線的斜率不存在時(shí),直線的方程為,此時(shí)直線被圓截得的弦長為2,滿足條件;
②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,
由題意可得,解得,所以直線的方程為.
綜上所述,則直線的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,且是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大。
(Ⅲ)在線段上是否存在一點(diǎn),使得與所成的角為? 若存在,求出的長度;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蝴蝶定理因其美妙的構(gòu)圖,像是一只翩翩起舞的蝴蝶,一代代數(shù)學(xué)名家蜂擁而證,正所謂花若芬芳蜂蝶自來.如圖,已知圓的方程為,直線與圓交于,,直線與圓交于,.原點(diǎn)在圓內(nèi).
(1)求證:.
(2)設(shè)交軸于點(diǎn),交軸于點(diǎn).求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前n項(xiàng)和為, , ,數(shù)列滿足: , , ,數(shù)列的前n項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;
(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;
(3)記集合,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是真命題的個(gè)數(shù)是( )
(1)垂直于同一條直線的兩條直線互相平行
(2)與同一個(gè)平面夾角相等的兩條直線互相平行
(3)平行于同一個(gè)平面的兩條直線互相平行
(4)兩條直線能確定一個(gè)平面
(5)垂直于同一個(gè)平面的兩個(gè)平面平行
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)設(shè),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線與在公共點(diǎn)處有相同的切線,求點(diǎn)的橫坐標(biāo);
(Ⅲ)設(shè),且曲線與總存在公切線,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com