已知橢圓的焦點(diǎn)在軸上,一個(gè)頂點(diǎn)為,其右焦點(diǎn)到直線(xiàn)的距離為,則橢圓的方程為 .
【解析】
試題分析:據(jù)題意,橢圓方程是標(biāo)準(zhǔn)方程,,右焦點(diǎn)為,它到已知直線(xiàn)的距離為,,所以,橢圓方程為.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江舟山二中等三校高二上學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知橢圓的焦點(diǎn)在軸上,離心率為,則的值為( )
A. B. C. D.或
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省齊齊哈爾市高三二模文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的焦點(diǎn)在軸上,離心率,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)斜率為的直線(xiàn)與橢圓相交于兩點(diǎn),求證:直線(xiàn)與的傾斜角互補(bǔ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年福建師大附中高二第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題
(本小題13分)
已知橢圓的焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線(xiàn)的焦點(diǎn),離心率,過(guò)橢圓的右焦點(diǎn)作不與坐標(biāo)軸垂直的直線(xiàn),交橢圓于A、B兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(m,0)是線(xiàn)段OF上的一個(gè)動(dòng)點(diǎn),且,求取值范圍;
(Ⅲ)設(shè)點(diǎn)C是點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn),在x軸上是否存在一個(gè)定點(diǎn)N,使得C、B、N 三點(diǎn)共線(xiàn)?若存在,求出定點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:黑龍江省2009-2010學(xué)年度上學(xué)期高三期末(數(shù)學(xué)理)試題 題型:解答題
已知橢圓的焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線(xiàn)的焦點(diǎn),離心率,過(guò)橢圓的右焦點(diǎn)作與坐標(biāo)軸不垂直的直線(xiàn)交橢圓于兩點(diǎn).
(1)求橢圓方程;
(2)設(shè)點(diǎn)是線(xiàn)段上的一個(gè)動(dòng)點(diǎn),且,求的取值范圍;
(3)設(shè)點(diǎn)是點(diǎn)關(guān)于軸對(duì)稱(chēng)點(diǎn),在軸上是否存在一個(gè)定點(diǎn),使得三點(diǎn)共線(xiàn)?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com