已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
經(jīng)過 點B(0,
3
)
,且離心率為
1
2
,右頂點為A,左右焦點分別為F1,F(xiàn)2;橢圓C2以坐標原點為中心,且以F1F2為短軸端,上頂點為D.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)若C1與C2交于M、N、P、Q四點,當AD∥F2B時,求四邊形MNPQ的面積.
分析:(Ⅰ)利用橢圓經(jīng)過點B(0,
3
)
,且離心率為
1
2
,建立方程,求得幾何量,從而可得橢圓C1的方程;
(Ⅱ)C2的短軸長為2,設方程為
y2
m2
+x2=1
(m>1),利用AD∥F2B,可得C2的方程,與橢圓方程聯(lián)立,根據(jù)對稱性,可得四邊形MNPQ的面積.
解答:解:(Ⅰ)∵橢圓經(jīng)過點B(0,
3
)
,且離心率為
1
2
,∴e=
c
a
=
1
2
,b=
3

∴a=2,∴橢圓C1的方程為
x
2
 
4
+
y
2
 
3
=1
;
(Ⅱ)C2的短軸長為2,設方程為
y2
m2
+x2=1
(m>1)
∴D(0,m),A)2,0),F(xiàn)2(1,0)
∵AD∥F2B,∴m=2
3

∴C2的方程為
y2
12
+x2=1

設N(x1,y1),則
y12
12
+x12=1
x1
2
 
4
+
y1
2
 
3
=1
,解得
x12=
4
5
y12=
12
5
,∴|x1y1|=
4
3
5

∴根據(jù)對稱性,可得四邊形MNPQ的面積為
16
3
5
點評:本題考查橢圓的標準方程,考查橢圓的幾何性質,考查面積的計算,考查學生的計算能力,確定橢圓的方程是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:x2+
y2
m
=1
的焦點在y軸上,且離心率為
3
2
.過點M(0,3)的直線l與橢圓C相交于兩點A、B.
(1)求橢圓C的方程;
(2)設P為橢圓上一點,且滿足
OA
+
OB
OP
(O為坐標原點),當|
PA
|-|
PB
|<
3
時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C經(jīng)過點A(1, 
3
2
)
,且經(jīng)過雙曲線y2-x2=1的頂點.P是該橢圓上的一個動點,F(xiàn)1,F(xiàn)2是橢圓的左右焦點,
(1)求橢圓C的方程;
(2)求|PF1|•|PF2|的最大值和最小值.
(3)求
PF1
PF2
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),長半軸長為
2

(1)(i)求橢圓C的方程;
(ii)類比結論“過圓
x
2
 
+
y
2
 
=r2
上任一點(x0,y0)的切線方程是x0x+yy0=
r
2
 
”,歸納得出:過橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
上任一點(x0,y0)的切線方程是
x0x
a
2
 
+
y0y
b
2
 
=1
x0x
a
2
 
+
y0y
b
2
 
=1
;
(2)設M,N是直線x=2上的兩個點,若
F1M
F2M
=0,求|MN|
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,F(xiàn)1、F2分別為橢圓c的左右焦點,點P在橢圓C上(不是頂點),△PF1F2內一點G滿足3
PG
=
PF1
+
PF2
,其中
OG
=(
1
9
a,
6
9
a)

(I)求橢圓C的離心率;
(Ⅱ)若橢圓C短軸長為2
3
,過焦點F2的直線l與橢圓C相交于A、B兩點(A、B不是左右頂點),若
AF2
=2
F2B
,求△F1AB面積.

查看答案和解析>>

同步練習冊答案