9.已知-$\frac{π}{2}$<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<$\frac{π}{2}$,且tanα、tanβ是方程x2+6x+7=0的兩個(gè)根,則α+β=-$\frac{3π}{4}$.

分析 由已知的一元二次方程,利用韋達(dá)定理求出兩根之和與兩根之積,即可得到tanα+tanβ及tanα•tanβ的值,然后利用兩角和的正切函數(shù)公式表示出tan(α+β),把tanα+tanβ及tanα•tanβ的值代入即可求出tan(α+β)的值,由α和β的范圍,求出α+β的范圍,利用特殊角的三角函數(shù)值即可求出α+β的度數(shù).

解答 (本題滿分為14分)
解:∵tanα+tanβ=-6,tanα•tanβ=7,…(4分)
∵tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=$\frac{-6}{1-7}$=1,…(8分)
∴tanα<0,tanβ<0,
∴-$\frac{π}{2}$<α<0,-$\frac{π}{2}$<β<0,…(12分)
∴-π<α+β<0,
∴α+β=-$\frac{3π}{4}$.
故答案為:-$\frac{3π}{4}$…(14分)

點(diǎn)評(píng) 此題考查了兩角和與差的正切函數(shù)公式,以及一元二次方程的根的分布與系數(shù)的關(guān)系.熟練掌握公式及關(guān)系是解本題的關(guān)鍵,同時(shí)在解題時(shí)注意角度的范圍,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的漸近線方程是y=±$\sqrt{2}$x,則雙曲線的離心率等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.$\frac{|1+i|}{1+i}$+$\frac{1+i}{|1+i|}$=( 。
A.$\sqrt{2}$B.2C.$\sqrt{2}$+$\sqrt{2}$iD.$\sqrt{2}$-$\sqrt{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若變量x、y滿足約束條件$\left\{{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\\{y≥1}\end{array}}$,則z=$\frac{x+2y}{x}$的最小值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知集合A={x|mx2+2$\sqrt{2}$x-2≤0},B={x|mx2+2$\sqrt{2}$x+1≥0},且A∩B有且僅有一個(gè)元素,則實(shí)數(shù)m的取值的集合為{-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=-x2+1B.y=lg|x|C.$y=\frac{1}{x}$D.y=e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=4,BC=3,AA1=5,則A1C與平面ABCD所成角的正切值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{4}{3}$C.$\frac{3}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=$\left\{\begin{array}{l}{x^{{2^{\;}}}}\\ π\(zhòng)\ 0\end{array}\right.$$\begin{array}{l},{x>0}\\,{x=0}\\,{x<0}\end{array}$,則f[f (-3)]等于( 。
A.0B.πC.π2D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知f(x)是定義在R上的奇函數(shù),且f(x)在[0,+∞)上為增函數(shù),如果f(x2+ax+a)≤f(-at2-t+1)對(duì)任意x∈[1,2],任意t∈[1,2]恒成立,則實(shí)數(shù)a的最大值是( 。
A.-1B.$-\frac{1}{3}$C.$-\frac{{\sqrt{2}}}{4}$D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案