3
cosx-sinx化為Asin(ωx+φ)(A>0,ω>0,0<φ<π)的形式為
 
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由兩角和的正弦函數(shù)可得原式=2(
3
2
cosx-
1
2
sinx)=2(sin
3
cosx+cos
3
sinx)=2sin(x+
3
解答: 解:
3
cosx-sinx=2(
3
2
cosx-
1
2
sinx)
=2(sin
3
cosx+cos
3
sinx)
=2sin(
3
+x)=2sin(x+
3
),
故答案為:2sin(x+
3
點(diǎn)評(píng):本題考查兩角和與差的正弦函數(shù),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式0<log2(-b+2)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a>0,c>0,a、b、c為常數(shù))的圖象過點(diǎn)(c,0),當(dāng)0<x<c時(shí),函數(shù)值均大于0.若c=2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PA⊥底面ABCD,AC⊥AD,底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC,點(diǎn)E在棱PB上. 若平面AEC⊥平面PBC,求E點(diǎn)位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:對(duì)應(yīng)任意的a,b,c,d∈R,恒有不等式(ac+bd)2≤(a2+b2)(c2+d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,P為(x0,y0),C為(x,y),則
PC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(tanx+2,1);
b
=(1,tanx+2);當(dāng)x∈[-
π
3
,
π
4
]時(shí),求向量
a
b
夾角θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(θ)=
cos(θ-
2
)sin(
3
+θ)
sin(-θ-π)

(1)化簡f(θ);
(2)若f(θ)=
1
3
,求tanθ的值;
(3)若f(
π
6
-θ)=
1
3
,求f(
6
+θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)P(3,2)的圓C的圓心在y軸的負(fù)半軸上,且圓C截直線l:2x-y+3=0所得弦長為4
5
,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案