在f(m,n)中,m,n,f(m,n)∈N*,且對任何m,n都有:
(Ⅰ)f(1,1)=1,
(Ⅱ)f(m,n+1)=f(m,n)+2,
(Ⅲ)f(m+1,1)=2f(m,1).
給出下列三個結(jié)論:
①f(1,5)=9;  ②f(5,1)=16;   ③f(5,6)=26.
其中正確的結(jié)論個數(shù)是( 。﹤.
分析:通過觀察f(1,1)=1,f(m,n+1)=f(m,n)+2推出f(m,n)=f(m,1)+(n-1)•2
然后得到f(m,1)=f(1,1)•2n-1=2n-1,即可求解①f(1,5)=9;  ②f(5,1)=16;   ③f(5,6)=26.得到結(jié)果.
解答:解:由f(1,1)=1,f(m,n+1)=f(m,n)+2⇒f(m,n)=f(m,1)+(n-1)•2
又由f(m+1,1)=2f(m,1)⇒f(m,1)=f(1,1)•2n-1=2n-1,
所以f(m,n)=2n-1+(n-1)•2,
f(1,5)=f(1,1)+(5-1)•2=9;
f(5,1)=f(1,1)•24=24=16;
f(5,6)=26-1+(6-1)•2=26都正確,
故選A.
點評:本題是基礎(chǔ)題,考查新定義的應(yīng)用,能夠通過已知條件,推出要求的結(jié)果是解題的關(guān)鍵,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在f(m,n)中,m,n,f(m,n)∈N+,且對任何m、n都有:(Ⅰ)f(1,1)=1,(Ⅱ)f(m,n+1)=f(m,n)+2,(Ⅲ)f(m+1,1)=2f(m,1).
給出下列四個結(jié)論:
①f(1,5)=9; ②f(5,1)=16;
③f(5,6)=26;④f(5,3)=20.
其中正確的結(jié)論是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在f(m,n)中,m、n、f(m,n)∈N*,且對任何m,n都有:
(i)f(1,1)=1;
(ii)f(m,n+1)=f(m,n)+3;
(iii)f(m+1,1)=2f(m,1),給出以下三個結(jié)論:
(1)f(1,5)=13;(2)f(5,1)=16;(3)f(5,6)=26
其中正確的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在f(m,n)中,m,n,f(m,n)∈N*,且對任何m,n都有:(1)f(1,1)=1;(2)f(m,n+1)=f(m,n)+2;(3)f(m+1,1)=2f(m,1),給出以下三個結(jié)論:①f(1,5)=9;②f(5,1)=16;③f(5,6)=26其中正確的個數(shù)為
3
3
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶八中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

在f(m,n)中,m,n,f(m,n)∈N*,且對任何m,n都有:
(Ⅰ)f(1,1)=1,
(Ⅱ)f(m,n+1)=f(m,n)+2,
(Ⅲ)f(m+1,1)=2f(m,1).
給出下列三個結(jié)論:
①f(1,5)=9;  ②f(5,1)=16;   ③f(5,6)=26.
其中正確的結(jié)論個數(shù)是( )個.
A.3
B.2
C.1
D.0

查看答案和解析>>

同步練習(xí)冊答案