已知奇函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),且f(x)在(0,+∞)上是增函數(shù),f(1)=0.
(1)求證:函數(shù)f(x)在(-∞,0)上是增函數(shù);
(2)解關(guān)于x的不等式f(x)<0.
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)設(shè)x1,x2∈(-∞,0),且x1<x2,則有-x1>-x2>0,然后根據(jù)奇函數(shù)f(x)在[0,+∞)上為增函數(shù),建立不等關(guān)系,化簡即可得到f(x1)<f(x2),從而得到函數(shù)的單調(diào)性.
(2)分類討論解不等式,即可得出結(jié)論.
解答: (1)證明:設(shè)x1,x2∈(-∞,0),且x1<x2,則有-x1>-x2>0,
∵f(x)是[0,+∞)上的增函數(shù)∴f(-x1)>f(-x2
又∵f(x)為R上的奇函數(shù),∴-f(x1)>-f(x2),即f(x1)<f(x2).
故f(x)是(-∞,0)上的單調(diào)增函數(shù);
(2)解:x>0時(shí),f(x)<f(1),∴x<1,∴0<x<1;
x<0時(shí),f(x)<f(-1),∴x<-1,∴x<-1,
∴不等式f(x)<0的解集為{x|0<x<1或x<-1}.
點(diǎn)評:本題主要考查了函數(shù)的奇偶性,以及函數(shù)單調(diào)性的判斷與證明,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈R,點(diǎn)A(11,2)到直線l:y=(k+1)x+k-2的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角β的終邊經(jīng)過點(diǎn)P(1,-2),則sinβ的值是( 。
A、-
2
5
5
B、
5
5
C、-
5
5
D、
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={y|y=log2x,x<2},B={y|y=(
1
2
)x,x<1}
,則A∩B=( 。
A、(
1
2
,+∞)
B、(
1
2
,2
C、(0,
1
2
)
D、(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,曲線G:y=
1
2
x2-
1
2
ax-a2(x∈R),若a≠0,曲線G的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),求經(jīng)過這三點(diǎn)的圓C的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(e+e-1)2-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-8<0},B={x|x2<a2}(其中a為正的常數(shù)),I=R,若A∩B=∅,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于方程|log2x|=lg(x+1)的兩個(gè)根x1,x2(x1<x2)以下說法正確的是( 。
A、x1+x2>2
B、x1x2>2
C、0<x1x2<1
D、1<x1+x2<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a7是a8,a9的等差中項(xiàng),公比q滿足如下條件:△OAB(O為原點(diǎn))中,
OA
=(1,1),
OB
=(2,q),∠A為銳角,則公比q等于( 。
A、1B、-1C、-2D、1或-2

查看答案和解析>>

同步練習(xí)冊答案