【題目】已知函數(shù),其中e是自然對(duì)數(shù)的底數(shù),

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),討論函數(shù)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

【答案】1)增區(qū)間是,減區(qū)間是.2)見(jiàn)解析

【解析】

1)求導(dǎo)函數(shù),分別令,解出不等式,即可得到函數(shù)的單調(diào)區(qū)間;

2)由 得方程 ,顯然 為此方程的一個(gè)實(shí)數(shù)解.當(dāng)時(shí), 方程可化簡(jiǎn)為,設(shè)函數(shù)利用導(dǎo)數(shù)得到 的最小值, 因?yàn)?/span>,再對(duì)討論,得到函數(shù)的零點(diǎn)個(gè)數(shù).

解:(1)因?yàn)?/span>,所以.

;由.

所以由的增區(qū)間是,減區(qū)間是.

2)因?yàn)?/span>.

,得.

設(shè),又不是的零點(diǎn),

故只需再討論函數(shù)零點(diǎn)的個(gè)數(shù).

因?yàn)?/span>

所以當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞增.

所以當(dāng)時(shí),取得最小值.

當(dāng)時(shí),無(wú)零點(diǎn);

當(dāng)時(shí), 有唯一零點(diǎn);

當(dāng),即時(shí),因?yàn)?/span>

所以上有且只有一個(gè)零點(diǎn).

.

設(shè),

所以上單調(diào)遞增,

所以,都有.

所以.

所以上有且只有一個(gè)零點(diǎn).

所以當(dāng)時(shí),有兩個(gè)零點(diǎn)

綜上所述,當(dāng)時(shí),有一個(gè)零點(diǎn);

當(dāng)時(shí),有兩個(gè)零點(diǎn);

當(dāng)時(shí),有三個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王于2015年底貸款購(gòu)置了一套房子,根據(jù)家庭收入情況,小王選擇了10年期每月還款數(shù)額相同的還貸方式,且截止2019年底,他沒(méi)有再購(gòu)買(mǎi)第二套房子.下圖是2016年和2019年小王的家庭收入用于各項(xiàng)支出的比例分配圖,根據(jù)以上信息,判斷下列結(jié)論中正確的是(

A.小王一家2019年用于飲食的支出費(fèi)用跟2016年相同

B.小王一家2019年用于其他方面的支出費(fèi)用是2016年的3

C.小王一家2019年的家庭收入比2016年增加了1

D.小王一家2019年用于房貸的支出費(fèi)用比2016年減少了

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓上一點(diǎn),以點(diǎn)及橢圓的左、右焦點(diǎn),為頂點(diǎn)的三角形面積為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)作斜率存在且互相垂直的直線(xiàn),兩交點(diǎn)的中點(diǎn),兩交點(diǎn)的中點(diǎn),求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),在以原點(diǎn)O為極點(diǎn),x的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為

1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;

2)設(shè)直線(xiàn)x軸,y軸分別交于AB兩點(diǎn),點(diǎn)P是曲線(xiàn)上任意一點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科.其中把部分與整體以某種方式相似的形體稱(chēng)為分形.分形是一種具有自相似特性的現(xiàn)象.圖象或者物理過(guò)程.標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無(wú)限精細(xì)的結(jié)構(gòu).也就是說(shuō),在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已.謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,其構(gòu)造方法如下:取一個(gè)實(shí)心的等邊三角形(如圖1),沿三邊的中點(diǎn)連線(xiàn),將它分成四個(gè)小三角形,挖去中間的那一個(gè)小三角形(如圖2),對(duì)其余三個(gè)小三角形重復(fù)上述過(guò)程(如圖3).若圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知xy之間的幾組數(shù)據(jù)如表:

x

1

2

3

4

y

1

m

n

4

如表數(shù)據(jù)中y的平均值為2.5,若某同學(xué)對(duì)m賦了三個(gè)值分別為1.5,2,2.5,得到三條線(xiàn)性回歸直線(xiàn)方程分別為,,對(duì)應(yīng)的相關(guān)系數(shù)分別為,,下列結(jié)論中錯(cuò)誤的是(

參考公式:線(xiàn)性回歸方程中,其中,.相關(guān)系數(shù)

A.三條回歸直線(xiàn)有共同交點(diǎn)B.相關(guān)系數(shù)中,最大

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c均為正數(shù),設(shè)函數(shù)fx)=|xb||x+c|+a,xR

1)若a2b2c2,求不等式fx)<3的解集;

2)若函數(shù)fx)的最大值為1,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體中,P為線(xiàn)段上的動(dòng)點(diǎn),下列說(shuō)法正確的是(

A.對(duì)任意點(diǎn)P平面

B.三棱錐的體積為

C.線(xiàn)段DP長(zhǎng)度的最小值為

D.存在點(diǎn)P,使得DP與平面所成角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),總有,求的最小值;

2)對(duì)于中任意恒有,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案