(文)兩直線x+y-2=0 和y+a=0的夾角為( )
A.30°
B.60°
C.120°
D.150°
【答案】分析:由題意可得,,k2=0,設(shè)兩直線的夾角為α,由可求
解答:解:由題意可得,,k2=0
設(shè)兩直線的夾角為α
=
∵α∈[0°,90°]
∴α=60°
故選:B
點(diǎn)評(píng):本題主要考查了直線夾角公式的應(yīng)用,解答本題中要注意兩直線夾角的范圍是[0,],屬于基礎(chǔ)試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2-y|y|=1(|x|≤4).
(1)畫出曲線C的圖象,
(2)(文)若直線l:y=x+m與曲線C有兩個(gè)公共點(diǎn),求m的取值范圍;
(理)若直線l:y=kx-1與曲線C有兩個(gè)公共點(diǎn),求k的取值范圍;
(3)若P(0,p)(p>0),Q為曲線C上的點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

拋物線方程為y2=px+1)(p>0),直線x+y=mx軸的交點(diǎn)在拋物線的準(zhǔn)線的右邊.

(1)求證:直線與拋物線總有兩個(gè)交點(diǎn);

(2)設(shè)直線與拋物線的交點(diǎn)為Q、ROQOR,求p關(guān)于m的函數(shù)fm)的表達(dá)式;

(3)(文)在(2)的條件下,若拋物線焦點(diǎn)F到直線x+y=m的距離為,求此直線的方程;

(理)在(2)的條件下,若m變化,使得原點(diǎn)O到直線QR的距離不大于,求p的值的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

拋物線方程為y2=px+1)(p>0),直線x+y=mx軸的交點(diǎn)在拋物線的準(zhǔn)線的右邊.

(1)求證:直線與拋物線總有兩個(gè)交點(diǎn);

(2)設(shè)直線與拋物線的交點(diǎn)為Q、R,OQOR,求p關(guān)于m的函數(shù)fm)的表達(dá)式;

(3)(文)在(2)的條件下,若拋物線焦點(diǎn)F到直線x+y=m的距離為,求此直線的方程;

(理)在(2)的條件下,若m變化,使得原點(diǎn)O到直線QR的距離不大于,求p的值的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:武漢市2007屆高中畢業(yè)生四月調(diào)研測(cè)試題文理科數(shù)學(xué)試卷 題型:013

(文)兩直線x+y-2=0和y+a=0的夾角為

[  ]

A.30°

B.60°

C.120°

D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案