【題目】在三棱柱中,,側(cè)面底面,D是棱的中點.
(1)求證:平面平面;
(2)若,求二面角的余弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)取的中點,連接與交于點,連接,根據(jù)題意可證四邊形是平行四邊形,即.根據(jù)側(cè)面底面,可得平面,根據(jù)面面垂直的判定定理,即可得證。
(2)分別以分別為軸正方向建系,求出各點坐標及平面和平面的法向量,利用面面角的公式求解即可。
解:(1)取的中點,連接與交于點,連接.
則為的中點,
因為三棱柱,
所以,且,
所以四邊形是平行四邊形.
又是棱的中點,所以.
因為側(cè)面底面,且,
所以平面
所以平面
又平面,
所以平面平面
(2)連接,因為,所以是等邊三角形,故底面。
設(shè),可得,
分別以分別為軸正方向建立空間直角坐標系,
則
設(shè)平面的一個法向量為
則
所以,取
所以
又平面的一個法向量為
故
因為二面角為鈍角,所以其余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),曲線C2的方程為(x-1)2+(y-1)2=2.
(1)在以O為極點,x軸的正半軸為極軸建立極坐標系,求曲線C1,C2的極坐標方程;
(2)直線θ=β(0<β<π)與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列說法:
①方程表示一個圓;
②若,則方程表示焦點在軸上的橢圓;
③已知點,若,則動點的軌跡是雙曲線的右支;
④以過拋物線焦點的弦為直徑的圓與該拋物線的準線相切,
其中正確說法的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)年10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
假設(shè)每年的梅雨季節(jié)天氣相互獨立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.
老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關(guān)系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為元,請你幫助老李分析,他來年應該種植哪個品種的楊梅可以使總利潤萬元的期望更大?并說明理由.
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,點,為直線:上的動點,過作的垂線,該垂線與線段的垂直平分線交于點,記的軌跡為.
(1)求的方程;
(2)若過的直線與曲線交于,兩點,直線,與直線分別交于,兩點,試判斷以為直徑的圓是否經(jīng)過定點?若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的圖像與軸相切,求證:對于任意互不相等的正實數(shù),,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在長方體中,點E是棱上的一個動點,若平面交棱于點F,給出下列命題:
①四棱錐的體積恒為定值;
②對于棱上任意一點E,在棱上均有相應的點G,使得平面;
③O為底面對角線和的交點,在棱上存在點H,使平面;
④存在唯一的點E,使得截面四邊形的周長取得最小值.
其中為真命題的是____________________.(填寫所有正確答案的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com