【題目】如圖,在下列四個正方體中,A,B為正方體的兩個頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個正方體中,直接AB與平面MNQ不平行的是

A. B. C. D.

【答案】A

【解析】對于B,易知ABMQ,則直線AB∥平面MNQ;對于C,易知ABMQ,則直線AB∥平面MNQ;對于D,易知ABNQ,則直線AB∥平面MNQ.故排除B,C,D,選A.

點(diǎn)睛:本題主要考查線面平行的判定定理以及空間想象能力,屬容易題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;在80mg/100mL(含80)以上時,屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了300輛機(jī)動車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測結(jié)果如表:

酒精含量(mg/100mL)

[20,30)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

人數(shù)

3

4

1

4

2

3

2

1


(1)繪制出檢測數(shù)據(jù)的頻率分布直方圖(計算并標(biāo)上選取的y軸單位長度,在圖中用實線畫出矩形框并用陰影表示),估計檢測數(shù)據(jù)中酒精含量的眾數(shù)
(2)求檢測數(shù)據(jù)中醉酒駕駛的頻率,并估計檢測數(shù)據(jù)中酒精含量的中位數(shù)、平均數(shù)(請寫出計算過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn)A(1,3)、B(2,2),并且直線m:3x﹣2y=0平分圓C.
(1)求圓C的方程;
(2)若過點(diǎn)D(0,1),且斜率為k的直線l與圓C有兩個不同的交點(diǎn)M、N.
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)若 =12,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(x1 , y1),B(x2 , y2)是函數(shù)f(x)= 的圖象上的任意兩點(diǎn)(可以重合),點(diǎn)M在直線x= 上,且 =
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,當(dāng)n≥2時,Sn=f( )+f( )+f( )+…+f( ),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx﹣sin2x+
(1)求f(x)的最小正周期值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在[0, ]上的最值及取最值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.

(1)求的通項公式;

(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)f(x)=sin(2x+φ)(|φ|< )的圖象上的所有點(diǎn)向左平移 個單位長度,得到函數(shù)y=g(x)的圖象,且g(﹣x)=g(x),則(
A.y=g(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對稱
B.y=g(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對稱
C.y=g(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對稱
D.y=g(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F(xiàn),G,H分別是BC,PB,PC,AD的中點(diǎn).
(Ⅰ)求證:PH∥平面GED;
(Ⅱ)過點(diǎn)F作平面α,使ED∥平面α,當(dāng)平面α⊥平面EDG時,設(shè)PA與平面α交于點(diǎn)Q,求PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A={x|1≤x≤5},B={x|2≤x≤6},
(1)若x∈A,y∈B且均為整數(shù),求x>y的概率.
(2)若x∈A,y∈B且均為實數(shù),求x>y的概率.

查看答案和解析>>

同步練習(xí)冊答案