【題目】《中國詩詞大會》是央視首檔全民參與的詩詞節(jié)目,節(jié)目以“賞中華詩詞,尋文化基因,品生活之美”為宗旨.每一期的比賽包含以下環(huán)節(jié):“個人追逐賽”、“攻擂資格爭奪賽”和“擂主爭霸賽”,其中“擂主爭霸賽”由“攻擂資格爭奪賽”獲勝者與上一場擂主進行比拼.“擂主爭霸賽”共有九道搶答題,搶到并答對者得一分,答錯則對方得一分,率先獲得五分者即為該場擂主.在《中國詩詞大會》的某一期節(jié)目中,若進行“擂主爭霸賽”的甲乙兩位選手每道搶答題得到一分的概率都是為0.5,則搶答完七道題后甲成為擂主的概率為________.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程以及直線的直角坐標方程;
(2)將曲線向左平移2個單位,再將曲線上的所有點的橫坐標縮短為原來的,得到曲線,求曲線上的點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題10分)選修4—4:坐標系與參數(shù)方程
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標方程;
(Ⅱ)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|2x﹣6|(x∈R),記f(x)的最小值為c.
(1)求c的值;
(2)若實數(shù)ab滿足a>0,b>0,a+b=c,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋(是圓的直徑).規(guī)劃在公路上選兩個點,,并修建兩段直線型道路,,規(guī)劃要求:線段,上的所有點到點的距離均不小于圓的半徑.已知點,到直線的距離分別為和(,為垂足),測得,,(單位:百米).
(1)若道路與橋垂直,求道路的長;
(2)在規(guī)劃要求下,和中能否有一個點選在處?并說明理由;
(3)在規(guī)劃要求下,若道路和的長度均為(單位:百米),求當最小時,、兩點間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點滿足: .
(1)求動點的軌跡的方程;
(2)設(shè)過點的直線與曲線交于兩點,點關(guān)于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,已知a1=1,且anSn+1﹣an+1Sn=an+1﹣λan,對一切n∈N*都成立.
(1)當λ=1時;
①求數(shù)列{an}的通項公式;
②若bn=(n+1)an,求數(shù)列{bn}的前n項的和Tn;
(2)是否存在實數(shù)λ,使數(shù)列{an}是等差數(shù)列如果存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網(wǎng)店經(jīng)營各種兒童玩具,該網(wǎng)店老板發(fā)現(xiàn)該店經(jīng)銷的一種手腕可以搖動的款芭比娃娃玩具在某周內(nèi)所獲純利(元)與該周每天銷售這種芭比娃娃的個數(shù)(個)之間的關(guān)系如下表:
每天銷售芭比娃娃個數(shù)(個) | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
該周內(nèi)所獲純利(元) | 66 | 69 | 74 | 81 | 89 | 90 | 91 |
(1)由表中數(shù)據(jù)可推測線性相關(guān),求出回歸直線方程;
(2)請你預(yù)測當該店每天銷售這種芭比娃娃20件時,每周獲純利多少?
參考公式:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com