如圖所示,圓錐的軸截面為等腰直角, 為底面圓周上一點.
(1)若的中點為,,求證平面;
(2)如果,,求此圓錐的全面積.
(1)詳見解析;(2).
解析試題分析:(1)要證平面,即證垂直于平面內(nèi)的兩條相交直線,是已知,轉(zhuǎn)化為證平面,利用母線相等,利用底面半徑相等,為中點,證得平面 ,證得,,得證;(2),求出底面半徑,以及母線長,根據(jù)全面積公式,,求出全面積.
試題解析:解:①連接OC,
∵OQ=OB,C為QB的中點,∴OC⊥QB 2分
∵SO⊥平面ABQ,BQ平面ABQ
∴SO⊥BQ,結(jié)合SO∩OC=0,可得BQ⊥平面SOC
∵OH?平面SOC,∴BQ⊥OH, 5分
∵OH⊥SC,SC、BQ是平面SBQ內(nèi)的相交直線,
∴OH⊥平面SBQ; 6分
②∵∠AOQ=60°,QB=,∴直角△ABQ中,∠ABQ=30°,
可得AB==4 8分
∵圓錐的軸截面為等腰直角△SAB,
∴圓錐的底面半徑為2,高SO=2,可得母線SA=2,
因此,圓錐的側(cè)面積為S側(cè)=π×2×2=4π 10分
∴此圓錐的全面積為S側(cè)+S底=4π+π×22=(4+4)π 12分
考點:1.線面垂直的判定;2.線面垂直的性質(zhì);3.幾何體的表面積.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.
(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四面體的六條棱中,有五條棱長都等于a.
(1)求該四面體的體積的最大值;
(2)當(dāng)四面體的體積最大時,求其表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分別為AC、AB的中點,將△AEF沿EF折起,使A′在平面BCEF上的射影O恰為EC的中點,得到圖(2).
(1)求證:EF⊥A′C;
(2)求三棱錐FA′BC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4,BD=4,AB=2CD=8.
(1)設(shè)M是PC上的一點,證明:平面MBD⊥平面PAD;
(2)當(dāng)M點位于線段PC什么位置時,PA∥平面MBD?
(3)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,AB=2BF=4,C,E分別是AB,AF的中點(如下左圖).將此三角形沿CE對折,使平面AEC⊥平面BCEF(如下右圖),已知D是AB的中點.
(1)求證:CD∥平面AEF;
(2)求證:平面AEF⊥平面ABF;
(3)求三棱錐C-AEF的體積,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com