(2009•崇明縣二模)拋擲兩顆骰子,所得兩顆骰子的點數(shù)之和為5的概率等于
1
9
1
9
分析:本題是一個求概率的問題,考查事件“拋擲兩顆骰子,所得兩顆骰子的點數(shù)之和為5”這是一個古典概率模型,求出所有的基本事件數(shù)N與事件“拋擲兩顆骰子,所得兩顆骰子的點數(shù)之和為5”包含的基本事件數(shù)N,再由公式
n
N
求出概率得到答案
解答:解:拋擲兩顆骰子所出現(xiàn)的不同結果數(shù)是6×6=36
事件“拋擲兩顆骰子,所得兩顆骰子的點數(shù)之和為5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四種
故事件“拋擲兩顆骰子,所得兩顆骰子的點數(shù)之和為5”的概率是
4
36
=
1
9

故答案為
1
9
點評:本題是一個古典概率模型問題,解題的關鍵是理解事件“拋擲兩顆骰子,所得兩顆骰子的點數(shù)之和為5”,由列舉法計算出事件所包含的基本事件數(shù),判斷出概率模型,理解求解公式
n
N
是本題的重點,正確求出事件“拋擲兩顆骰子,所得兩顆骰子的點數(shù)之和為5”所包含的基本事件數(shù)是本題的難點
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•崇明縣二模)函數(shù)y=f(x)是函數(shù)y=log3x(x>0)的反函數(shù),則方程f(x)=
19
的解x=
-2
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•崇明縣二模)函數(shù)y=
log2
(4x2-3x)
 
的定義域為
(-∞,-
1
4
]∪[1,+∞)
(-∞,-
1
4
]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•崇明縣二模)二項式(1-x)5展開式中含x3項的系數(shù)是
-10
-10
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•崇明縣二模)在等差數(shù)列{an}中,通項an=6n-5(n∈N*),且a1+a2+a3+…+an=an2+bn則
lim
n→∞
an-2bn
2an+bn
=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•崇明縣二模)設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點坐標為A(0,-
2
),且其右焦點到直線y-x-2
2
=0
的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(
1
2
,0
),求證點M的所有“相關弦”的中點在同一條直線上;
(3)根據(jù)解決問題(2)的經(jīng)驗與體會,請運用類比、推廣等思想方法,提出一個與“相關弦”有關的具有研究價值的結論,并加以解決.(本小題將根據(jù)所提出問題的層次性給予不同的分值)

查看答案和解析>>

同步練習冊答案