已知f1(x)=sin x+cos x,記f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),則f1+f2+…+f2 014=________.
0
f2(x)=f1′(x)=cos x-sin x,
f3(x)=(cos x-sin x)′=-sin x-cos x,
f4(x)=-cos x+sin x,f5(x)=sin x+cos x,
以此類推,可得出fn(x)=fn+4(x),
又∵f1(x)+f2(x)+f3(x)+f4(x)=0,
∴f1+f2+…+f2 014
=503f1+f2+f3+f4+f1+f2=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),曲線處的切線斜率為0
求b;若存在使得,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)上不單調(diào),則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求經(jīng)過點(diǎn)A(2,-2)的曲線f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)是R上的單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是(   )。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為元,并且每件產(chǎn)品需向總公司交元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬件.
(1)求該分公司一年的利潤(rùn)(萬元)與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該分公司一年的利潤(rùn)最大?并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,函數(shù),
(1)若曲線與曲線在它們的交點(diǎn)處的切線互相垂直,求,的值;
(2)設(shè),若對(duì)任意的,且,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如表:
x
-1
0
4
5
f(x)
1
2
2
1
 
f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示:

下列關(guān)于f(x)的命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn);
⑤函數(shù)y=f(x)-a的零點(diǎn)個(gè)數(shù)可能為0, 1,2,3,4個(gè).
其中正確命題的序號(hào)是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),若,則(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案