【題目】(Ⅰ)已知c>0,關(guān)于x的不等式:x+|x-2c|≥2的解集為R.求實(shí)數(shù)c的取值范圍;
(Ⅱ)若c的最小值為m,又p、q、r是正實(shí)數(shù),且滿足p+q+r=3m,求證:p2+q2+r2≥3.
【答案】(Ⅰ)[1,+∞);(Ⅱ)詳見解析.
【解析】
(I)由題意只需x+|x﹣2c|的最小值大于等于2即可,解不等式即可得c的范圍;(Ⅱ)由(1)知p+q+r=3,運(yùn)用柯西不等式,可得(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2,即可得證.
解:(I)不等式x+|x-2c|≥2的解集為R 函數(shù)y=x+|x-2c|在R上恒大于或等于2,
∵x+|x-2c|=,∴函數(shù)y=x+|x-2c|,在R上的最小值為2c,∴2c≥2c≥1.
所以實(shí)數(shù)c的取值范圍為[1,+∞);
(Ⅱ)證明:由(1)知p+q+r=3,又p,q,r是正實(shí)數(shù),
所以(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=9,
即p2+q2+r2≥3.當(dāng)且僅當(dāng)p=q=r=1等號(hào)成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國式過馬路”的大意是湊夠一撮人即可走,跟紅綠燈無關(guān).部分法律專家的觀點(diǎn)為“交通規(guī)則的制定目的就在于服務(wù)城市管理,方便行人,而‘中國式過馬路’是對(duì)我國法治化進(jìn)程的嚴(yán)重阻礙,反應(yīng)了國人規(guī)則意識(shí)的淡薄.”某新聞媒體對(duì)此觀點(diǎn)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”“中立”和“不支持”態(tài)度的人數(shù)如表所示:
支持 | 中立 | 不支持 | |
20歲以下 | 700 | 450 | 200 |
20歲及以上 | 200 | 150 | 300 |
在所有參與調(diào)查的人中,用分層隨機(jī)抽樣的方法抽取人,則持“支持”態(tài)度的人中20歲及以上的有_________人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 若函數(shù)在上的最大值為,最小值為, 令.
(1)求的表達(dá)式;
(2)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,滿足 ,.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),若是遞增數(shù)列,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若非負(fù)整數(shù)m、n在求和時(shí)恰進(jìn)位一次(十進(jìn)制下),則稱有序數(shù)對(duì)(m、n)為“好的”,那么,所有和為2014的好的有序數(shù)對(duì)的個(gè)數(shù)為__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AB>AC,H為的垂心,M為邊BC的中點(diǎn),點(diǎn)S在邊BC上且滿足∠BHM=∠CHS,點(diǎn)A在直線HS上的投影為P.證明:的外接圓與的外接圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),拋物線:的焦點(diǎn)為,射線與拋物線相交于點(diǎn),與其準(zhǔn)線相交于點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),且離心率為,過其右焦點(diǎn)F的直線交橢圓C于M,N兩點(diǎn),交y軸于E點(diǎn).若,.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com