在平面直角坐標(biāo)系中,以為始邊,角的終邊與單位圓的交點在第一象限,已知.

(1)若,求的值;

(2)若點橫坐標(biāo)為,求.

 

【答案】

(1);(2).

【解析】

試題分析:(1)解法一是利用結(jié)合平面向量的數(shù)量積得到的等量關(guān)系,從而求出

的值;解法二是將轉(zhuǎn)化為兩直線、的斜率之間的關(guān)系,進(jìn)而求出的值;(2)設(shè),利用三角函數(shù)的定義求出的值,然后利用兩角差的正弦公式求出的值,最后利用三角行的面積公式求出的面積;解法二是利用平面向量的數(shù)量積計算出,然后計算出的值,最后利用三角形的面積公式計算出的面積.

試題解析:(1)解法1:由題可知:,

,

,得

   則

解法2:由題可知:,

,

,∴

,得

(2)解法1:由(1),記,

   ,得

解法2:  即

即:, ,

,  

.

考點:1.平面向量的數(shù)量積;2.兩角差的正弦公式;3.同角三角函數(shù)的基本關(guān)系;4.三角函數(shù)的面積公式

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當(dāng)且僅當(dāng)l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習(xí)冊答案