(本小題滿分14分)
已知斜三棱柱ABC—A1B1C1的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α (0°<α<90°),點(diǎn)在底面上的射影落在上.
(1)求證:AC⊥平面BB1C1C;
(2)若AB1⊥BC1,D為BC的中點(diǎn),求α ;
(3)若α = arccos ,且AC=BC=AA1時(shí),求二面角C1—AB—C的大。
解 (1)∵ B1D⊥平面ABC, AC平面ABC,
∴ B1D⊥AC, 又AC⊥BC, BC∩B1D=D.
∴ AC⊥平面BB1C1C.
(2) ∵ AC⊥平面BB1C1C ,AB1⊥BC1 ,由三垂線定理可知,
B1C⊥BC1.
∴ 平行四邊形BB1C1C為菱形,此時(shí),BC=BB1.
又∵ B1D⊥BC,D為BC中點(diǎn),B1C= B1B,∴△BB1C為正三角形,
∴ ∠B1BC= 60°.
(3)過C1作C1E⊥BC于E,則C1E⊥平面ABC.
過E作EF⊥AB于F,C1F,由三垂線定理,得C1F⊥AB.
∴∠C1FE是所求二面角C1—AB—C的平面角.
設(shè)AC=BC=AA1=a,
在Rt△CC1E中,由∠C1BE=α=,C1E=a.
在Rt△BEF中,∠EBF=45°,EF=BE=a.
∴∠C1FE=45°,故所求的二面角C1—AB—C為45°.
解法二:(1)同解法一
(2)要使AB1⊥BC1,D是BC的中點(diǎn),即=0,||=||,
∴, =0,∴.
∴,故△BB1C為正三角形,∠B1BC=60°;
∵ B1D⊥平面ABC,且D落在BC上,
∴ ∠B1BC即為側(cè)棱與底面所成的角.
故當(dāng)α=60°時(shí),AB1⊥BC1,且D為BC中點(diǎn).
(3)以C為原點(diǎn),CA為x軸,CB為y軸,經(jīng)過C點(diǎn)且垂直于平面ABC的直線為z軸建立空間直角坐標(biāo)系,則A(a,0,0),B(0,a,0),C(0,-,a),
平面ABC的法向量n1=(0,0,1),設(shè)平面ABC1的法向量n2=(x,y,z).
由n2=0,及n2=0,得
∴n2=(,,1).
cos<n1, n2>= = ,
故n1 , n2所成的角為45°,即所求的二面角為45
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com