13.已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x),滿足f(x)+g(x)=2x
(Ⅰ)求f(x),g(x);
(Ⅱ)求證g(x)在[0,+∞)上為增函數(shù);
(Ⅲ)求函數(shù)g(x)+g(2x)的最小值.

分析 (Ⅰ)根據(jù)函數(shù)奇偶性定義,解出奇函數(shù)f(x)和偶函數(shù)g(x)的表達(dá)式;
(Ⅱ)利用導(dǎo)數(shù)的方法求證g(x)在[0,+∞)上為增函數(shù);
(Ⅲ)利用換元法求函數(shù)g(x)+g(2x)的最小值.

解答 解:(Ⅰ)∵f(x)為定義在R上的奇函數(shù),g(x)為定義在R上的偶函數(shù)
∴f(-x)=-f(x),g(-x)=g(x)
又∵由f(x)+g(x)=2x,結(jié)合f(-x)+g(-x)=-f(x)+g(x)=2-x,
∴f(x)=$\frac{1}{2}$(2x-2-x),g(x)=$\frac{1}{2}$(2x+2-x);
(Ⅱ)證明:g′(x)=$\frac{1}{2}$•ln2•(2x-2-x)>0,∴g(x)在[0,+∞)上為增函數(shù);
(Ⅲ)g(x)+g(2x)=$\frac{1}{2}$(2x+2-x)+$\frac{1}{2}$(22x+2-2x),
設(shè)2x+2-x=t(t≥2),y=$\frac{1}{2}t+\frac{1}{2}({t}^{2}-2)$=$\frac{1}{2}$(t+$\frac{1}{2}$)2-$\frac{9}{4}$,
∴t=2時(shí),函數(shù)g(x)+g(2x)的最小值為2.

點(diǎn)評(píng) 本題以指數(shù)型函數(shù)為載體,考查了函數(shù)求表達(dá)式以及函數(shù)的單調(diào)性等知識(shí)點(diǎn),合理地利用函數(shù)的基本性質(zhì),再結(jié)合換元法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若x,y滿足$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{y≥0}\end{array}}\right.$,則z=x+2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出下列說法:
①冪函數(shù)的圖象一定不過第四象限;
②奇函數(shù)圖象一定過坐標(biāo)原點(diǎn);
③已知函數(shù)y=f(x+1)的定義域?yàn)閇1,2],則函數(shù)y=f(2x)的定義域?yàn)閇2,3];
④定義在R上的函數(shù)f(x)對(duì)任意兩個(gè)不等實(shí)數(shù)a、b,總有$\frac{f(a)-f(b)}{a-b}>0$成立,則f(x)在R上是增函數(shù);
⑤$f(x)=\frac{1}{x}$的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
正確的有①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.拋物線y=x2在點(diǎn)P處的切線平行于直線y=4x-5,則點(diǎn)P的坐標(biāo)為(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={0,1,2,3,4,5},集合$B=\{x∈N,\frac{x-4}{x}≤0\}$,則∁AB=( 。
A.{5}B.{0,5}C.{1,5}D.{0,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.畫出下列函數(shù)f(x)的圖象并根據(jù)函數(shù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間.
(1)$f(x)=\left\{{\begin{array}{l}{3x+4,-1≤x≤0}\\{{x^2}-2x+4,x>0}\end{array}}\right.$
(2)f(x)=|x+2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.畫出圖中正四棱錐和圓臺(tái)的三視圖.(尺寸不作嚴(yán)格要求)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow a,\vec b,|{\vec a}|=1,|{\vec b}|=2$.若對(duì)任意單位向量$\vec e$,均有$|{\vec a•\vec e}|+|{\vec b•\vec e}|≤\sqrt{6}$,則$\overrightarrow a•\vec b$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系中,直線$\sqrt{2}x-y+m=0$不過原點(diǎn),且與橢圓$\frac{y^2}{4}+\frac{x^2}{2}=1$有兩個(gè)不同的公共點(diǎn)A,B.
(Ⅰ)求實(shí)數(shù)m取值所組成的集合M;
(Ⅱ)是否存在定點(diǎn)P使得任意的m∈M,都有直線PA,PB的傾斜角互補(bǔ).若存在,求出所有定點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案