【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元,為了增加企業(yè)競爭力,決定優(yōu)化產業(yè)結構,調整出()名員工從事第三產業(yè),調整后這名員工他們平均每人創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調整多少名員工從事第三產業(yè)?
(2)設,若調整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,求的最大值.
科目:高中數學 來源: 題型:
【題目】設函數在上有定義,實數和滿足,若在區(qū)間上不存在最小值,則稱在上具有性質.
(1)當,且在區(qū)間上具有性質時,求常數的取值范圍;
(2)已知(),且當時,,判別在區(qū)間上是否具有性質,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為正方體ABCD-A1B1C1D1,動點M從B1點出發(fā),在正方體表面沿逆時針方向運動一周后,再回到B1的運動過程中,點M與平面A1DC1的距離保持不變,運動的路程x與l=MA1+MC1+MD之間滿足函數關系l=f(x),則此函數圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(題文)(2017·長春市二模)如圖,在四棱錐中,底面是菱形,,平面,,點,分別為和中點.
(1)求證:直線平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的方程為,其中常數,是拋物線的焦點.
(1)若直線被拋物線所截得的弦長為6,求的值;
(2)設是點關于頂點的對稱點,是拋物線上的動點,求的最大值;
(3)設,、是兩條互相垂直,且均經過點的直線,與拋物線交于點、,與拋物線交于點、,若點滿足,求點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知常數,數列滿足,.
(1)若,,求的值;
(2)在(1)的條件下,求數列的前項和;
(3)若數列中存在三項,,(且)依次成等差數列,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】賀先生想向銀行貸款買輛新能源車,銀行可以貸給賀先生N元,一年后需要一次性還1.02N元.
(1)賀先生發(fā)現一個投資理財方案:每個月月初投資元,共投資一年,每月的月收益率達到1%,于是賀先生決定貸款12元,按投資方案投資,求的值,使得賀先生用最終投所得的錢還清貸款后,還有120000的余額去旅游(精確到0.01元);
(2)賀先生又發(fā)現一個投資方案:第個月月初投資元共投資一年,每月的月收益率達到1%,則賀先生應貸款多少,使得用最終投資所得的錢還清后,還有120000的余額去旅游(精確到0.01元).
(參考數據,,)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com