6.已知角α的頂點在原點,始邊與x軸的正半軸重合.
(1)若終邊經(jīng)過點P(-1,2),求sinαcosα的值;
(2)若角α的終邊在直線y=-3x上,求10sinα+$\frac{3}{cosα}$的值.

分析 (1)利用任意角的三角函數(shù)的定義,求得sinα、cosα的值,可得sinαcosα的值.
(2)分角α的終邊在第二象限、角α的終邊在第四象限兩種情況,分別利用任意角的三角函數(shù)的定義,求得sinα、cosα的值,可得10sinα+$\frac{3}{cosα}$的值.

解答 解:(1)由題知:x=-1,y=2,則r=$\sqrt{(-1)^{2}+{2}^{2}}$=$\sqrt{5}$,
∴sinα=$\frac{y}{r}$=$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,cosα=$\frac{x}{r}$=-$\frac{\sqrt{5}}{5}$,∴sinαcosα=$\frac{2\sqrt{5}}{5}•(-\frac{\sqrt{5}}{5})$=-$\frac{2}{5}$.
(2)當角α的終邊在第二象限,在它的終邊上任意任意取一點A(-1,3),
則x=-1,y=3,r=|OP|=$\sqrt{10}$,∴sinα=$\frac{y}{r}$=$\frac{3}{\sqrt{10}}$=$\frac{3\sqrt{10}}{10}$,cosα=$\frac{x}{r}$=$\frac{-1}{\sqrt{10}}$=-$\frac{\sqrt{10}}{10}$,
故 10sinα+$\frac{3}{cosα}$=3$\sqrt{10}$-3$\sqrt{10}$=0.
當角α的終邊在第四象限,在它的終邊上任意任意取一點A(1,-3),
則x=1,y=-3,r=|OP|=$\sqrt{10}$,∴sinα=$\frac{y}{r}$=$\frac{-3}{\sqrt{10}}$=-$\frac{3\sqrt{10}}{10}$,cosα=$\frac{x}{r}$=$\frac{1}{\sqrt{10}}$=$\frac{\sqrt{10}}{10}$,
故 10sinα+$\frac{3}{cosα}$=-3$\sqrt{10}$+3$\sqrt{10}$=0.
綜上可得 10sinα+$\frac{3}{cosα}$=0.

點評 本題主要考查任意角的三角函數(shù)的定義,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=ax-cosx在(-∞,+∞)上是單調(diào)增函數(shù),則實數(shù)a的取值范圍是( 。
A.[-1,1]B.[1,+∞)C.(-∞,-1]D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實數(shù)a,b,c,d滿足(a-lnb)2+(c-d)2=0,則(a-c)2+(b-d)2的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R},若A∩B≠∅,則實數(shù)a的取值范圍是( 。
A.[0,6]B.(0,6)C.(-∞,0]∪[6,+∞)D.(-∞,0)∪(6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.曲線y=$\frac{1}{x}$在點P(-1,-1)的切線方程是x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求值與化簡
(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$;
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知圓C的圓心為y=$\frac{1}{4}$x2的焦點,且與直線4x+3y+2=0相切,則圓C的方程為(  )
A.${(x-1)^2}+{y^2}=\frac{36}{25}$B.${x^2}+{(y-1)^2}=\frac{36}{25}$C.(x-1)2+y2=1D.x2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={y|y>a2+1或y<a},B={y|2≤y≤4},若A∩B≠∅,則實數(shù)a的取值范圍是$\sqrt{3}>$a$>-\sqrt{3}$或a>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足x2$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow c$=$\overrightarrow{0}$,x∈R.記△=$\overrightarrow$2-4$\overrightarrow a\overrightarrow c$,下列說法正確的是③.(只填序號)
①若△=0,則x有唯一解;
②若△>0,則x有兩解;
③若△<0,則x無解.

查看答案和解析>>

同步練習(xí)冊答案