函數(shù)f(x)=2x-1+x-3的零點(diǎn)x0∈( 。
分析:利用根的存在定理去判斷區(qū)間短點(diǎn)值的符號,從而確定函數(shù)零點(diǎn)的區(qū)間.
解答:解:因為f(x)=2x-1+x-3,所以f(1)=20+1-3=-1<0,f(2)=2+2-3=1>0.
所以由根的存在性定理可知函數(shù)f(x)零點(diǎn)必在區(qū)間(1,2)內(nèi).
故選B.
點(diǎn)評:本題考查了函數(shù)零點(diǎn)區(qū)間的判斷,判斷函數(shù)零點(diǎn)區(qū)間主要是利用根的存在定理,判斷函數(shù)在區(qū)間(a,b)上f(a)f(b)<0,即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x,x∈(-∞,2)
log2x,x∈(2,+∞)
,則滿足f(x)=4的x的值是( 。
A、2B、16
C、2或16D、-2或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足:a1=1,a n+1=f(
1
an
),
(1)求數(shù)列{an}的通項公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1求Tn
(3)設(shè)bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+b3+…+bn,若Sn
k-2004
2
對一切n∈N*成立,求最小的正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1
,對任意m∈[-3,3],不等式f(mx-1)+f(2x)<0恒成立,則實(shí)數(shù)x的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x+6, x∈[1,2]
x+7, x∈[-1,1]
,則f(x)的最大值、最小值為
10,6
10,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+x-5,那么方程f(x)=0的解所在區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案