【題目】如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn).F為PB中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B﹣PAC的體積.

【答案】
(1)證明:在三角形PBC中,

∵E是PC中點(diǎn),F(xiàn)為PB中點(diǎn),

∴EF∥BC,BC面ABC,EF面ABC,

∴EF∥面ABC


(2)證明:∵PA⊥平面ABC,BC平面ABC,∴BC⊥PA.

又∵AB是⊙O的直徑,∴BC⊥AC,

∴BC⊥面PAC

∵EF∥BC,BC⊥面PAC,

∴EF⊥面PAC


(3)解:∵PA⊥⊙O所在的平面,AC是PC在面ABC內(nèi)的射影,

∴∠PCA即為PC與面ABC所成角,

∴∠PCA=45°,PA=AC,

在Rt△ABC中,E是PC中點(diǎn),

,

∴三棱錐B﹣PAC的體積


【解析】(1)在三角形PBC中,由E是PC中點(diǎn),F(xiàn)為PB中點(diǎn),知EF∥BC,由此能夠證明EF∥面ABC.(2)由PA⊥平面ABC,BC平面ABC,知BC⊥PA,再由AB是⊙O的直徑,知BC⊥AC,故BC⊥面PAC,由此能夠證明EF⊥面PAC.(3)因?yàn)镻A⊥⊙O所在的平面,AC是PC在面ABC內(nèi)的射影,所以∠PCA即為PC與面ABC所成角,故∠PCA=45°,PA=AC.由此能夠求出三棱錐B﹣PAC的體積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對平面與平面垂直的判定的理解,了解一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,a、b、c分別為∠A,∠B,∠C的對邊,如果a、b、c成等差數(shù)列,∠B=30°,△ABC的面積為 ,那么b等于(
A.
B.1+
C.
D.2+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為, .

(Ⅰ)若直線與曲線交于不同的兩點(diǎn) ,當(dāng)時(shí),求的值;

(Ⅱ)當(dāng)時(shí),求曲線關(guān)于直線對稱的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)也是橢圓 )的一個(gè)焦點(diǎn), 的公共弦長為.

(Ⅰ)求的方程

(Ⅱ)過點(diǎn)的直線相交于, 兩點(diǎn),與相交于 兩點(diǎn),且, 同向.若求直線的斜率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出四個(gè)命題的表述: ①直線(3+m)x+4y﹣3+3m=0(m∈R)恒過定點(diǎn)(﹣3,3);
②線段AB的端點(diǎn)B的坐標(biāo)是(3,4),A在圓x2+y2=4上運(yùn)動(dòng),則線段AB的中點(diǎn)M的軌跡方程 +(y﹣2)2=1
③已知M={(x,y)|y= },N={(x,y)|y=x+b},若M∩N≠,則b∈[﹣ , ];
④已知圓C:(x﹣b)2+(y﹣c)2=a2(a>0,b>0,c>0)與x軸相交,與y軸相離,則直線ax+by+c=0與直線x+y+1=0的交點(diǎn)在第二象限.
其中表述正確的是( (填上所有正確結(jié)論對應(yīng)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體ABCD中,AB和CD為對棱.設(shè)AB=a,CD=b,且異面直線AB與CD間的距離為d,夾角為θ.
(Ⅰ)若θ= ,且棱AB垂直于平面BCD,求四面體ABCD的體積;
(Ⅱ)當(dāng)θ= 時(shí),證明:四面體ABCD的體積為一定值;
(Ⅲ)求四面體ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a1+a2=b4 , b1+b2=a2
(1)求{an}與{bn}的通項(xiàng)公式;
(2)記數(shù)列{an+bn}的前n項(xiàng)和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次歌手大獎(jiǎng)賽上,七位評(píng)委為歌手打出的分?jǐn)?shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值和方差分別為(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長為6,則 的最小值為(
A.10
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案