若數(shù)列的前n項(xiàng)和為,則下列命題:
(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;
(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項(xiàng)均為正數(shù);
(3)若是等差數(shù)列(公差),則的充要條件是
(4)若是等比數(shù)列,則的充要條件是
其中,正確命題的個(gè)數(shù)是(   )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
B

試題分析:數(shù)列{an}的前n項(xiàng)和為Sn,故 Sn =a1+a2+a3+…+an.若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}不一定是遞增數(shù)列,如當(dāng)an<0 時(shí),數(shù)列{Sn}是遞減數(shù)列,故(1)不正確;由數(shù)列{Sn}是遞增數(shù)列,不能推出數(shù)列{an}的各項(xiàng)均為正數(shù),如數(shù)列:0,1,2,3,…,滿足{Sn}是遞增數(shù)列,但不滿足數(shù)列{an}的各項(xiàng)均為正數(shù),故(2)不正確;若{an}是等差數(shù)列(公差d≠0),則由S1•S2…Sk=0,不能推出a1•a2…ak=0,例如數(shù)列:-3,-1,1,3,滿足S4=0,但 a1•a2•a3•a4≠0,故(3)不正確.若{an}是等比數(shù)列,則由S1•S2…Sk=0(k≥2,k∈N)可得數(shù)列的{an}公比為-1,故有an+an+1=0.由an+an+1=0可得數(shù)列的{an}公比為-1,可得S1•S2…Sk=0(k≥2,k∈N),故(4)正確.故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列滿足: 
(I)證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(II)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列的前項(xiàng)和為,且(     )
A.11B.16C.20D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

挪威數(shù)學(xué)家阿貝爾,曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如下圖),利用它們的面積關(guān)系發(fā)現(xiàn)了一個(gè)重要的恒等式——阿貝爾公式:


則其中:(I)L3=       ;(Ⅱ)Ln=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知公差不為零的等差數(shù)列的前項(xiàng)和為,若,則    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,,則此數(shù)列前13項(xiàng)的和為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前項(xiàng)之和為,若為一個(gè)確定的常數(shù),則下列各數(shù)中也可以確定的是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列中,,,則______;設(shè),則數(shù)列的前項(xiàng)和______.

查看答案和解析>>

同步練習(xí)冊(cè)答案