【題目】給定數(shù)列,記該數(shù)列前項(xiàng)中的最大項(xiàng)為,該數(shù)列后項(xiàng),, …..,中的最小項(xiàng)為,.
(1)對(duì)于數(shù)列:3,4,7,1,求出相應(yīng)的,,;
(2)是數(shù)列的前項(xiàng)和,若對(duì)任意,有,其中且,
①設(shè),判斷數(shù)列是否為等比數(shù)列;
②若數(shù)列對(duì)應(yīng)的滿足:對(duì)任意的正整數(shù)恒成立,求的取值范圍.
【答案】(1),,;(2)①當(dāng)時(shí),數(shù)列是等比數(shù)列,當(dāng)時(shí),數(shù)列不是等比數(shù)列;②.
【解析】
(1)根據(jù),的定義可求相應(yīng)的,,.
(2)根據(jù)題設(shè)的遞推關(guān)系可得,從而得到,根據(jù)是否為零點(diǎn)可判斷數(shù)列是否為等比數(shù)列,而根據(jù)以及,的定義可得數(shù)列的前項(xiàng)單調(diào)遞增,故可得的取值范圍.
解:(1),,;
,,;
,,.
(2)①當(dāng)時(shí),,所以;
當(dāng)時(shí),由,則,
兩式相減得,即,
所以.
因?yàn)?/span>,
所以當(dāng)時(shí),,故,
所以數(shù)列滿足,
即數(shù)列是以為首項(xiàng),為公比的等比數(shù)列;
當(dāng)時(shí),,故,數(shù)列不是等比數(shù)列.
②由①知,當(dāng)時(shí),;
當(dāng)時(shí),.
又,
,
由于,
所以由,可得,.
所以對(duì)任意的正整數(shù)恒成立,
即數(shù)列的前項(xiàng)單調(diào)遞增是題設(shè)成立的必要條件,易知.
因?yàn)?/span>,,
所以.
當(dāng)時(shí),由,得,解得,
此時(shí),不符合,舍去;
當(dāng),由,得,解得,
此時(shí),符合.
綜上所述,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,過(guò)F的直線與拋物線交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),則下列命題中正確的個(gè)數(shù)為( )
①面積的最小值為4;
②以為直徑的圓與x軸相切;
③記,,的斜率分別為,,,則;
④過(guò)焦點(diǎn)F作y軸的垂線與直線,分別交于點(diǎn)M,N,則以為直徑的圓恒過(guò)定點(diǎn).
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求證:當(dāng)x∈(1,)時(shí),f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且僅有1個(gè)極值點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國(guó)古代的設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國(guó)現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會(huì)發(fā)現(xiàn)塔的高度正好跟此對(duì)角線長(zhǎng)度相等.以塔底座的邊作方形.作方圓圖,會(huì)發(fā)現(xiàn)方圓的切點(diǎn)正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測(cè)量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點(diǎn)的距離不超過(guò)米,則該木塔的高度可能是(參考數(shù)據(jù):)( )
A.米B.米C.米D.米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正三角形的邊長(zhǎng)為2, 分別在三邊和上, 為的中點(diǎn), .
(Ⅰ)當(dāng)時(shí),求的大;
(Ⅱ)求的面積的最小值及使得取最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱中,,,點(diǎn),分別為棱,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用四種不同顏色給圖中的A,B,C,D,E,F六個(gè)點(diǎn)涂色,要求每個(gè)點(diǎn)涂一種顏色,且圖中每條線段的兩個(gè)端點(diǎn)涂不同顏色,則不同的涂色方法用
A.288種B.264種C.240種D.168種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中中,曲線C的參數(shù)方程(為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)P到直線的距離的最大值;
(2)若曲線C上所有的點(diǎn)均在直線的右下方,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,E,F分別為,的中點(diǎn),是由繞直線旋轉(zhuǎn)得到,連結(jié),,.
(1)證明:平面;
(2)若與平面所成的角為60°,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com